Table of Contents
Editorial
303 Views, 133 PDF Downloads
Ji-Dong Gu AbstractThis new journal of Applied Environmental Biotechnology (AEB) is celebrating its 3rd year of birthday in 2018. It has a relative short publication history on the academic publishing market for the last 3 years only with a total of 5 issues published in 3 volumes currently, including 1 issue in 2016, and 2 issues in 2017 and 2018, to form the complete archives. The year 2018 is also an important and celebrated one for this journal: AEB has been accepted for inclusion in the CAS database in March and then Scopus in December, both being achieved within the same year. This is a significant milestone in the history of AEB. If an impact factor (IF) was issued to this journal now, it is greater than 1.0 for sure. AEB has a very good future and a great potential to grow further.
|
1
|
Biodegradation and Gene Expression
992 Views, 317 PDF Downloads
Lin-Na Du, Ke-Ke Pan, Gang Li, Yu-Yi Yang, Fang-Cheng Xu DOI:10.26789/AEB.2018.02.005 AbstractMicrobial decolorization has been investigated extensively. Various microbes have been studied for their dye removing capability; however, microbial decolorizer with a strong environmental adaptability and wide substrate spectrum is of great potential for its possible practical application. Therefore, in this study, Aeromonas sp. DH-6, a wide dye spectrum decolorizer, was investigated in terms of its use for Malachite Green (MG) remediation. Results indicated that most of carbon sources have no effect on decolorization, while the nitrogen sources of beef extract and yeast extract could enhance MG decolorization significantly. Among the tested metal ions, Cu2+, Fe2+, and Zn2+ could significantly inhibit decolorization. Moreover, the strain showed a very stable and efficient decolorization performance in the pH of 5.0-10.0 and at 20-40oC. Besides, it could almost completely decolorize MG at concentrations ≤ 1000 mg/L within 36 h. Based on UV-visible, GC-MS, and FTIR analysis, biodegradation of MG by the strain DH-6 was confirmed and data showed that MG was decomposed into 4-(Dimethylamino)benzophenone and other metabolites containing –C=O, –NH, and –OH groups. Enzyme analysis showed that tyrosinase, laccase, LiP, NADH-DCIP reductase, and MG reductase might be involved in MG degradation by the strain DH-6. Overall, the results demonstrated that the strain DH-6 will have an effective use as an alternative in MG bioremediation.
|
2-8
|
5528 Views, 275 PDF Downloads
Chen-Yang Li, Fang-Fang Liu, Jiang Ye, Jin-Feng Liu, Shi-Zhong Yang, Hui-Zhan Zhang, Bo-Zhong Mu DOI:10.26789/AEB.2018.02.004 AbstractA low-temperature active endo-β-1,4-mannanase (YBMan) from Bacillus subtilis TD7 was isolated, characterized and successfully expressed in Escherichia coli to enhance the yield of mannanase for a potential application as a gel-breaker in guar gum-based fracturing fluids in oilfields. YBMan showed good compatibility with a wide temperature range and retained about 70% relative activity at 20°C compared to its optimal temperature (65°C). This is the highest relative activity among reported low-temperature active mannanases against guar gum. The gene (1104 bp) of strain TD7 coding a protein with 367 amino acid residues was cloned and its expression generated two recombinant mannanases, TBMan-1 and TBMan-2. Compared to the wild type, the protein yield of TBMan-1 from a one-liter shake flask broth increased 5.6-fold, and the specific activity (crude enzyme) increased 6.4-fold. The total enzyme activity increased 35.8-fold with a total activity of approximately 79550 U. Moreover, TBMan-1 had at 20°C still about 80% relative activity. The enzyme was evaluated also for its application as gel-breaker and showed excellent ability for viscosity reduction with guar gum at 20°C. Low-temperature activity and high yield make the recombinant β-mannanase attractive for applications with guar-based hydraulic fracturing fluids and other biotechnological aspects.
|
17-25
|
Commentary
480 Views, 390 PDF Downloads
Ji-Dong Gu DOI:10.26789/AEB.2018.02.006 AbstractPollution of soils and sediments by metals and metalloids is a serious environmental problem and threat to the ecological health and environmental quality. Microorganisms are known capable of detoxifying metals and metaloids into insoluble or non-bioavailable forms so that bioaccumualtion can be prevented under selective conditions. A key issue involved in bioremediation is the very poor understanding on the chemistry of the pollutants, specifically the bioavailable concentartions of metals and metalloids in the environmental matrices, especially soils and sediments and at the relevant pH value. Chemical states of the pollutants in terms of speciation are crucial to the possible success of any remediation practice, but it is impossible to conduct an effective operation for cleaning up without such information in mind. In the literature available, it is a common trend and practice to justify bioremediation for in situ application by using pure cultures of microorganisms, but this is a very prematured and bold attempt to applying microorganisms for in situ cleaning up without any scientific ground to support. For polluted soils and sediments, microorganisms have no role for cleaning up but phytoremediation is an effective means to remove and extract toxic metals and metallods from the complex soil matrices. This has been demonstrated successfully with a number of metals and organics as well as organic pollutants in both laboratory and also field trials.
|
48-51
|
Microbial Ecology and Biotechnology
827 Views, 316 PDF Downloads
Ji-Dong Gu DOI:10.26789/AEB.2018.02.002 AbstractCoastal ecosystem is important because it bridges ocean and land. The brackish water receiving nutrients originated from land may nourish heterotrophic bacteria including Vibrio species, some of which may pose potential hazards to the public, marine lives and migratory birds in the coastal environment. A rich diversity of Vibrios is evident in the coastal and open oceans, but information on their ecophysiological adaptation and survival is still very limited. Their important roles in the geobiochemical cycles of nutrients have not been exolored adequately. In addition, it also been recently discovered that these Vibrios harbor a very rich of plasmids of various sizes with little knowledge on their function to the hosts. This information deserves attention in Vibrio ecology and their role in the various ecosystems for a better understanding of their survival and physiological function.
|
26-47
|
376 Views, 203 PDF Downloads
Yan-Ting Zhao, Lin Ye, Cui-Lan Duan, Xu-Xiang Zhang DOI:10.26789/AEB.2018.02.001 AbstractThe lactic acid producing bacteria (LAB) play a crucial role in the health of aquatic animals through controlling and competing against pathogens. In this study, based on the high-throughput sequencing of 16S rRNA gene amplicons, we examined the LAB in the gut of freshwater shrimps (Macrobrachium nipponense) and their living environments (sediment and pond water) and analyzed the correlations between the shrimp production and abundance of LAB. A high diversity and abundance of LAB (27 genera) were observed among the freshwater shrimp gut samples, and the results indicated that dissolved oxygen and temperature could affect the LAB community in the shrimp guts. In addition, shared and unique LAB among the shrimp guts, sediment and pond water were further analyzed. Linear regression analysis showed that the relative abundance of LAB was positively correlated with the levels of shrimp production. Moreover, comparison of the LAB community among different animals indicated that some LAB in shrimp guts may also play a beneficial role in fish, houseflies, pig and other animals. Collectively, this study provides comprehensive information for better understanding LAB in shrimp guts and their environments and further improving the ecological management of aquatic ecosystems regarding the application of probiotics and disease prevention.
|
9-16
|