Cheung K.H., Gu J.D., 2003. Reduction of chromate (CrO2−4) by an enrichment consortium and an isolate of marine sulfatereducing bacteria. Chemosphere 52:1523-1529 https://doi.org/10.1016/S0045-6535(03)00491-0
Cheung K.H., Gu J.D., 2007. Mechanisms of hexavalent chromium detoxification by bacteria and bioremediation applications. International Biodeterioration & Biodegradation 59: 8-15.
https://doi.org/10.1016/j.ibiod.2006.05.002
Dixon J.B., Weed S.B., 1977. Minerals in soil environments. Soil Science Society of America, Madison, WI. 948 pp
Dixit V., Pandey V., Shyam R., 2002. Chromium ions inactivate electron transport and enhance superoxide generation in vivo in pea (Pisum sativum L.cv. Azad) root mitochondria. Plant Cell Environ 25:687-693 https://doi.org/10.1046/j.1365-3040.2002.00843.x
Gu J.D., 2016. Biodegradation testing: so many tests but very little new innovation. Applied Environmental Biotechnology, 1(1): 92-95.
https://doi.org/10.18063/AEB.2016.01.007
Han X., Gu J.D., 2010. Sorption and transformation of toxic metals by microorganisms. Pages 153-176. In: R. Mitchell and J-D Gu (eds) Environmental Microbiology (2nd ed.), John Wiley, New York.
https://doi.org/10.1002/9780470495117.ch7
Khan A.G., 2001. Relationships between chromium biomagnification ratio, accumulation factor, and mycorrhizae in plants growing on tannery effluent-polluted soil. Envinon Int 26:417-423
https://doi.org/10.1016/s0160-4120(01)00022-8
Kimbrough D.E., Cohen Y., Winer A.M., Creelam L., Mabuni C., 1999. A critical assessment of chromium in the environment. Crit Rev Environ Sci Technol 29:1-46 https://doi.org/10.1080/10643389991259164
Kuffner M., Puschenreiter M., Wieshammer G., Gorfer M., Sessitsch A., 2008. Rhizosphere bacteria affect growth and metal uptake of heavy metal accumulating willows. Plant Soil 304:35-44
https://doi.org/10.1007/s11104-007-9517-9
McCutcheon S.C., Schnoor J.L., 2003. Phytoremediation: Transformation and Control of Contakinats. Wiley, Hoboken, NJ
https://doi.org/10.1111/j.1745-6584.2005.tb02280.x
Lai M.Y., Shen P., Gu J.D., 2005. Heavy metals in the benthic infauna gastropoda (Sermyla riqueti and Stenothyra devalis) of Mai Po Nature Reserve and Inner Deep Bay Ramsar Site of Hong Kong. Bulletin of Environmental Contamination and Toxicology 74: 1065-1071. https://doi.org/10.1007/s00128-005-0689-9
McIntyre T., 2003. Phytoremediation of heavy metals from soils. Adv Biochem Eng Biotechnol 78:97-123 https://doi.org/10.1007/3-540-45991-X 4
Quaggiotti S., Barcaccia G., Schiavon M., Nicole S., Galla G., Rossignolo V., Soattin M., Malagoli M., 2007. Phytoremediation of chromium using Salix species: Cloning ESTs and candidate genes involved in the Cr response. Gene 402:68-80 https://doi.org/10.1016/j.gene.2007.07.021
Ryan M.P., Williams D.E., Chater R.J., Hutton B.M., McPhail D.S., 2002. Why stainless steel corrodes. Nature (London) 415:770-774 https://doi.org/10.1038/415770a
Stumm W., Morgan J.J., 1996. Aquatic chemistry: chemical equilibria and rates in natural waters. (3rd ed.), Wiley, New York. pp. 1022.
Tessier A., Campbell P.G.C., Biosson M., 1979. Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry 51: 844-850. https://doi.org/10.1021/ac50043a017
Xu X.R., Li H.B., Gu J.D., 2005a. Reduction of hexavalent chromium by ascorbic acid in aqueous solutions. Chemosphere 57:609-613
https://doi.org/10.1016/j.chemosphere.2004.07.031
Xu X.R., Li H.B., Gu J.D., Li X.Y., 2005b. Kinetics of the reduction of chromium (VI) by vitamin C. Environ Toxicol Chem 24:1310-1314
https://doi.org/10.1897/04-238r.1
Yu X.Z., Gu J.D., 2006. Uptake, metabolism and toxicity of methyl tert-butyl ether (MTBE) in weeping willows. J Hazard Mater 137:1417-1423 https://doi.org/10.1016/j.jhazmat.2006.04.024
Yu X.Z., Gu J.D., 2007a. Accumulation and distribution of trivalent chromium and effects on hybrid willow (Salix matsudana Koidz × alba L.) metabolism. Arch Environ Contam Toxicol 52:503-511
https://doi.org/10.1007/s00244-006-0155-7
Yu X.Z., Gu J.D., 2007b. Metabolic responses of weeping willows to selenate and selenite. Env Sci Pollut Res 14:510-517 https://doi.org/10.1065/espr2007.04.407
Yu X.Z., Gu J.D., 2008a. The role of EDTA in phytoextraction of hexavalent and trivalent chromium by two willow trees. Ecotoxicol 17:143-152 https://doi.org/10.1007/s10646-007-0177-6
Yu X.Z., Feng X.H., 2016. Effects of trivalent chromium on biomass growth, water use efficiency and distribution of nutrient elements in rice seedlings. Applied Environmental Biotechnology, 1(1): 64-70.
https://doi.org/10.18063/AEB.2016.01.005
Yu X.Z., Gu J.D., Huang S.Z., 2007. Hexavalent chromium induced stress and metabolic responses of in hybrid willows. Ecotoxicol 16:299-309 https://doi.org/10.1007/s10646-006-0129-6
Yu X.Z., Zhou P.H., Yang Y.M., 2006. The potential for phytoremediation of iron cyanide complex by willows, Ecotoxicol 15:461-467 https://doi.org/10.1007/s10646-006-0081-5
Yu X.Z., Gu J.D., 2008b. Effect of available nitrogen on phytoavailability and bioaccumulation of hexavalent and trivalent chromium in hankow willows (Salix matsudana Koidz) Ecotoxicol Environ Saf https://doi.org/10.1016/j.ecoenv.2007.11.010