Lead (II) Tolerance and Uptake Capacities of Fungi Isolated from a Polluted Tributary in the Philippines
Abstract
Keywords
Full Text:
References
Abd El Hameed, A.H., Eweda, W.E., Abou-Taleb, K. A.A. and Mira, H.I., 2015. Biosorption of uranium and heavy metals using some local fungi isolated from phosphatic fertilizers. Annals of Agricultural Sciences, 60(2), 345–351. https://doi.org/10.1016/j.aoas.2015.10.003
Acharya, C., Acharya, S., Kar, R.N. and Sukla, L.B., 1999. Toxic Effect of Lead on the growth of Penicillium species. Journal of the Indian Institute of Science, 79, 295 – 302.
Adeogun, A.I., Kareem, S.O., Durosanya, J.B. and Balogun, E.S., 2012. Kinetics and Equilibrium Parameters of Biosorption and Bioaccumulation of Lead Ions From Aqueous Solutions By. Journal of Microbiology, Biotechnology and Food Sciences, 1(5), 1221–1234.
Ahmad, I., Ahmad, F. and Pichtel, J., 2011. Metal Tolerance and Biosorption Potential of Soil Fungi: Applications for a Green and Clean Water Treatment Technology. In: Ahmad, I., Ahmad, F., and Pitchel, J. (eds) Microbes and microbial technology: Agricultural and environmental applications (pp321 – 361), New York, USA: Springer-Verlag. https://doi.org/10.1007/978-1-4419-7931-5_13
Akar, T. and Tunali, S., 2006. Biosorption characteristics of Aspergillus flavus biomass for removal of Pb(II) and Cu(II) ions from an aqueous solution. Bioresource Technology, 97(15), 1780–1787.https://doi.org/10.1016/j.biortech.2005.09.009
Aksu, Z. and Tezer, S., 2005. Biosorption of reactive dyes on the green alga Chlorella vulgaris. Process Biochemistry, 40(3–4), 1347–1361.
Ayangbenro, A.S. and Babalola, O.O., 2017. A new strategy for heavy metal polluted environments: A review of microbial biosorbents. International Journal of Environmental Research and Public Health, 14(1), 1 – 16. https://doi.org/10.3390/ijerph14010094
Aytar, P., Gedikli, S., Buruk, Y., Cabuk, A. and Burnak, N., 2014. Lead and nickel biosorption with a fungal biomass isolated from metal mine drainage: Box-Behnken experimental design. International Journal of Environmental Science and Technology, 11(6), 1631–1640.https://doi.org/10.1007/s13762-013-0354-5
Bellion, M., Courbot, M., Jacob, C., Blaudez, D., and Chalot, M., 2006. Extracellular and cellular mechanisms sustaining metal tolerance in ectomycorrhizal fungi. FEMS Microbiology Letters, 254(2), 173–181. https://doi.org/10.1111/j.1574-6968.2005.00044.x
Bengtsson, L., Johansson, B., Hackett, T.J., McHale, L., and McHale, A.P., 1995. Studies on the biosorption of uranium by Talaromyces emersonii CBS 814.70 biomass. Applied Microbiology and Biotechnology, 42(5), 807–811.https://doi.org/10.1007/BF00171965
Bulut, Y., and Baysal, Z., 2006. Removal of Pb(II) from wastewater using wheat bran. Journal of Environmental Management, 78(2), 107–113. https://doi.org/10.1016/j.jenvman.2005.03.010
Chen, S.H., Ng, S.L., Cheow, Y.L., and Ting, A.S.Y., 2017. A novel study based on adaptive metal tolerance behavior in fungi and SEM-EDX analysis. Journal of Hazardous Materials, 334, 132–141. https://doi.org/10.1016/j.jhazmat.2017.04.004
Chojnacka, K., 2010. Biosorption and bioaccumulation - the prospects for practical applications. Environment International, 36(3), 299–307. https://doi.org/10.1016/j.envint.2009.12.001
Dey, P., Gola, D., Mishra, A., Malik, A., Singh, D.K., Patel, N. and Jehmlich, N., 2016. Comparative performance evaluation of multi-metal resistant fungal strains for simultaneous removal of multiple hazardous metals. Journal of Hazardous Materials, 318, 679–685. https://doi.org/10.1016/j.jhazmat.2016.07.025
Dixit, R., Malaviya, D., Pandiyan, K., Singh, U.B., Sahu, A., Shukla, R. and Paul, D., 2015. Bioremediation of Heavy Metals from Soil and Aquatic Environment: An Overview of Principles and Criteria of Fundamental Processes. Sustainability, 7(2), 2189–2212.https://doi.org/10.3390/su7022189
Elia, A.C., Galarini, R., Dörr, A.J.M., and Taticchi, M. I., 2006. Bioaccumulation of heavy metals, organochlorine pesticides, and detoxication biochemical indexes in tissues of Ictalurus melas of Lake Trasimeno. Bulletin of Environmental Contamination and Toxicology, 76(1), 132–139. https://doi.org/10.1007/s00128-005-0899-1
Ellis, M.B., and Ellis J.P., 1997. Microfungi on Land Plants: An Identification Handbook, (pp. 1 – 868), Croom Helm, London: Richmond Publishers.
Ezzouhri, L., Castro, E., Moya, M., Espinola, F., and Lairini, K., 2009. Heavy metal tolerance of filamentous fungi isolated from polluted sites in Tangier, Morocco. African Journal of Microbiology Research, 3(2), 35–48. https://doi.org/10.4236/nr.2012.34022
Fan, T., Liu, Y., Feng, B., Zeng, G., Yang, C., Zhou, M. and Wang, X., 2008. Biosorption of cadmium(II), zinc(II) and lead(II) by Penicillium simplicissimum: Isotherms, kinetics and thermodynamics. Journal of Hazardous Materials, 160(2–3), 655–661. https://doi.org/10.1016/j.jhazmat.2008.03.038
Gadd, G.M., 2007. Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycological Research, 111(1), 3–49. https://doi.org/10.1016/j.mycres.2006.12.001
Gilman, J.C., 2001. A Manual of Soil Fungi, 2nd ed., (pp. 1 – 400), New Delhi, India: Daya Publishing.
Gorbushina A.A. and Krumbein W.E., 2000. Subaerial Microbial Mats and Their Effects on Soil and Rock. In: Riding R.E., Awramik S.M. (eds) Microbial Sediments, (pp 161–170), Berlin, Germany: Springer. https://doi.org/10.1007/978-3-662-04036-2_18
Gube M., 2016. Fungal Molecular Response to Heavy Metal Stress. In: Esser, K., Hoffmeister, D. (eds) Biochemistry and Molecular Biology. The Mycota (A Comprehensive Treatise on Fungi as Experimental Systems for Basic and Applied Research) vol III (pp. 47-68), Cham, Switzerland: Springer. https://doi.org/10.1007/978-3-319-27790-5_4
Hafez, N., AbdelRazek, A.S., and Hafez, M.B., 1997. Accumulation of some heavy metals on Aspergillus flavus. Journal of Chemical Technology and Biotechnology, 68(1), 19–22. https://doi.org/10.1002/(sici)1097-4660(199701)68:1<19::aid-jctb508>3.0.co;2-k
He, J., and Chen, J.P., 2014. A comprehensive review on biosorption of heavy metals by algal biomass: Materials, performances, chemistry, and modeling simulation tools. Bioresource Technology, 160, 67–78. https://doi.org/10.1016/j.biortech.2014.01.068
He, Z.L., Yang, X.E. and Stoffella, P.J., 2005. Trace elements in agroecosystems and impacts on the environment. Journal of Trace Elements in Medicine and Biology, 19(2–3), 125–140. https://doi.org/10.1016/j.jtemb.2005.02.010
Iram, S., Ahmad, I., Javed, B., Yaqoob, S., Akhtar, K., Kazmi, M. R., and Badar-uz-Zaman., 2009. Fungal tolerance to heavy metals. Pakistan Journal of Botany, 41(5), 2583–2594.
Iram, S., Shabbir, R., Zafar, H. and Javaid, M., 2015. Biosorption and Bioaccumulation of Copper and Lead by Heavy Metal-Resistant Fungal Isolates. Arabian Journal for Science and Engineering, 40(7), 1867–1873. https://doi.org/10.1007/s13369-015-1702-1
Iskandar, N.L., Zainudin, N.A.I.M. and Tan, S.G., 2011. Tolerance and biosorption of copper (Cu) and lead (Pb) by filamentous fungi isolated from a freshwater ecosystem. Journal of Environmental Sciences, 23(5), 824–830. https://doi.org/10.1016/S1001-0742(10)60475-5
Jacob, J.M., Bardhan, S., and Balakrishnan R.B., 2013. Selenium and Lead tolerance in fungi isolated from sea water. International Journal of Innovative Research in Science, Engineering and Technology, 2(7), 2975 – 2982.
Jentschke, G. and Godbold, D. L., 2000. Metal toxicity and ectomycorrhizas. Physiologia Plantarum, 109(2), 107–116. https://doi.org/10.1034/j.1399-3054.2000.100201.x
Joshi, P.K., Swarup, A., Maheshwari, S., Kumar, R. and Singh, N., 2011. Bioremediation of Heavy Metals in Liquid Media Through Fungi Isolated from Contaminated Sources. Indian Journal of Microbiology, 51(4), 482–487. https://doi.org/10.1007/s12088-011-0110-9
Kalac, P. and Svoboda, L., 2000. A review of trace element concentrations in edible mushrooms. Food Chemistry, 69, 273–281.https://doi.org/10.1016/S0308-8146(99)00264-2
Kapahi, M. and Sachdeva, S., 2017. Mycoremediation potential of Pleurotus species for heavy metals: a review. Bioresources and Bioprocessing, 4(1), 1-9 https://doi.org/10.1186/s40643-017-0162-8
Kiene, R.P. and Slezak, D., 2006. Low dissolved DMSP concentrations in seawater revealed by small-volume gravity filtration and dialysis sampling. Limnology and Oceanography: Methods, 4(4), 80–95. https://doi.org/10.4319/lom.2006.4.80
Kim, H.C., Jang, T.W., Chae, H.J., Choi, W.J., Ha, M.N., Ye, B.J. and Hong, Y.S., 2015. Evaluation and management of lead exposure. Annals of occupational and environmental medicine, 27(1), 30. https://doi.org/10.1186/s40557-015-0085-9
Leitão, A. L., 2009. Potential of Penicillium species in the bioremediation field. International Journal of Environmental Research and Public Health, 6(4), 1393–1417. https://doi.org/10.3390/ijerph6041393
Machido, D., Ezeonuegbu, B., and Yakubu, S.E., 2011. Capacity of Isolates of Six Genera of Filamentous Fungi to Remove Lead, Nickel and Cadmium from Refinery Effluent. Journal of Environment and Earth Science, 6(8), 72–76. Retrieved from http://iiste.org/Journals/index.php/JEES/article/view/32545
Massaccesi, G., Romero, M.C., Cazau, M.C. and Bucsinszky, A.M., 2002. Cadmium removal capacities of filamentous soil fungi isolated from industrially polluted sediments, in La Plata (Argentina). World Journal of Microbiology and Biotechnology, 18(9), 817–820. https://doi.org/10.1023/A:1021282718440
Melgar, M.J., Alonso, J. and García, M.A., 2007. Removal of toxic metals from aqueous solutions by fungal biomass of Agaricus macrosporus. Science of the Total Environment, 385(1–3), 12–19.https://doi.org/10.1016/j.scitotenv.2007.07.011
Mohsenzadeh, F. and Shahrokhi, F., 2014. Biological removing of Cadmium from contaminated media by fungal biomass of Trichoderma species. Journal of Environmental Health Science and Engineering, 12(1), 1–7. https://doi.org/10.1186/2052-336X-12-102
Nagamani, A., Kunwar, I.K. and Manoharachary, C., 2006. Handbook of Soil Fungi, (pp 1-477), New Delhi, India: K. International Pvt. Ltd.
Navarrete, I.A., Gabiana, C.C., Dumo, J.R.E., Salmo, S.G., Guzman, M.A.L.G., Valera, N.S., and Espiritu, E.Q., 2017. Heavy metal concentrations in soils and vegetation in urban areas of Quezon City, Philippines. Environmental monitoring and assessment, 189(4), 145. https://doi.org/10.1007/s10661-017-5849-y
Oladipo, O.G., Awotoye, O.O., Olayinka, A., Bezuidenhout, C.C., and Maboeta, M.S., 2018. Heavy metal tolerance traits of filamentous fungi isolated from gold and gemstone mining sites. Brazilian Journal of Microbiology, 49(1), 29–37. https://doi.org/10.1016/j.bjm.2017.06.003
Ona, L.F., Alberto, A.M.P., Prudente, J.A., and Sigua, G.C., 2006. Levels of lead in urban soils from selected cities in a central region of the Philippines. Environmental Science and Pollution Research, 13(3), 177–183. https://doi.org/10.1065/espr2005.08.275
Oso, B.A., Olagunji, M.O. and Okiki, P.A., 2015. Lead tolerance and bioadsorption potentials of indigenous soil fungi in Ado Ekiti, Nigeria. European Journal of Experimental Biology, 5(9), 15 – 19.
Ostrea, E.M., Ostrea, A.M., Villanueva-Uy, M.E., Chiodo, L. and Janisse, J., 2015. Alluvial and riparian soils as major sources of lead exposure in young children in the Philippines: the role of floods. Environmental Science and Pollution Research, 22(7), 5082–5091. https://doi.org/10.1007/s11356-014-3908-2
Rhodes, C.J., 2014. Mycoremediation (bioremediation with fungi)-growing mushrooms to clean the earth. Chemical Speciation and Bioavailability, 26(3), 196–198. https://doi.org/10.3184/095422914X14047407349335
Riddell, T., 2007. Elevated blood-lead levels among children living in the rural Philippines. Bulletin of the World Health Organization, 85(9), 674–680. https://doi.org/10.2471/blt.06.036137
Romero, M.C., Reinoso, E.H., Urrutia, M.I., and Kiernan, A.M., 2006. Biosorption of heavy metals by Talaromyces helicus: A trained fungus for copper and biphenyl detoxification. Electronic Journal of Biotechnology, 9(3), 221–226. https://doi.org/10.1016/j.toxlet.2006.04.004
Say, R., Yilmaz, N., and Denizli, A., 2003a. Biosorption of cadmium, lead, mercury, and arsenic ions by the fungus Penicillium purpurogenum. Separation Science and Technology, 38(9), 2039–2053. https://doi.org/10.1081/SS-120020133
Say, R., Yilmaz, N. and Denizli, A., 2003b. Removal of Heavy Metal Ions Using the Fungus Penicillium canescens. Adsorption Science and Technology, 21(7), 643–650. https://doi.org/10.1260/026361703772776420
Šimonovičová, A., 2008. Use of mitosporic fungi for heavy metal removal from experimental water solutions. Czasopismo Techniczne, 105(2): 207-212.
Singh, R., Gautam, N., Mishra, A. and Gupta, R., 2011. Heavy metals and living systems: An overview. Indian Journal of Pharmacology, 43(3), 246. https://doi.org/10.4103/0253-7613.81505
Solon, O., Riddell, T., Quimbo, S., Butrick, E., Alyward, G., Bacate, M. and Peabody, J., 2008. Nutrition among Children in the Central Philippines. Journal of Pediatrics, 152(2), 237–244. https://doi.org/10.1016/j.jpeds.2007.09.008
Sun, F., and Shao, Z., 2007. Biosorption and bioaccumulation of lead by Penicillium sp. Psf-2 isolated from the deep sea sediment of the Pacific Ocean. Extremophiles, 11(6), 853–858. https://doi.org/10.1007/s00792-007-0097-7
Svecova, L., Spanelova, M., Kubal, M. and Guibal, E., 2006. Cadmium, lead and mercury biosorption on waste fungal biomass issued from fermentation industry. I. Equilibrium studies. Separation and Purification Technology, 52(1), 142–153. https://doi.org/10.1016/j.seppur.2006.03.024
Taboski, M.A.S., Rand, T.G. and Piórko, A., 2005. Lead and cadmium uptake in the marine fungi Corollospora lacera and Monodictys pelagica. FEMS Microbiology Ecology, 53(3), 445–453. https://doi.org/10.1016/j.femsec.2005.02.009
Tong, S., Schirnding, Y.E.V. and Prapamontol, T., 2000. Environmental lead exposure: a public health problem of global dimensions. Bulletin of the World Health Organization, 78, 1068-1077.
Udochukwu, U., Nekpen, B.O., Udinyiwe, O.C. and Omeje, F. I., 2014. Bioaccumulation of heavy metals and pollutants by edible mushroom collected from Iselu market Benin-city. International Journal of Current Microbiology and Applied Sciences, 3(10), 52–57.
Valix, M. and Loon, L. O., 2003. Adaptive tolerance behaviour of fungi in heavy metals. Minerals Engineering, 16(3), 193–198. https://doi.org/10.1016/S0892-6875(03)00004-9
Valix, M., Tang, J. Y. and Malik, R., 2001. Heavy metal tolerance of fungi. Minerals Engineering, 14(5), 499–505. https://doi.org/10.1016/s0892-6875(01)00037-1
Vodnik, D., Byrne, A.R., and Gogala, N., 1998. The uptake and transport of lead in some ectomycorrhizal fungi in culture. Mycological Research, 102(8), 953–958. https://doi.org/10.1017/S0953756297005959
Wang, N., Xu, X., Li, H., Wang, Q., Yuan, L., and Yu, H., 2017. High performance and prospective application of xanthate-modified thiourea chitosan sponge-combined Pseudomonas putida and Talaromyces amestolkiae biomass for Pb(II) removal from wastewater. Bioresource Technology, 233, 58–66. https://doi.org/10.1016/j.biortech.2017.02.069
Wong, D.L., Merrifield-macrae, M.E., and Stillman, M.J., 2017. Lead (II) Binding in Metallothioneins, 17(Ii), 241–269. https://doi.org/10.1515/9783110434330-009
Yalçin, E., Çavuşoĝlu, K. and Kinalioĝlu, K., 2010. Biosorption of Cu2+and Zn2+by raw and autoclaved Rocella phycopsis. Journal of Environmental Sciences, 22(3), 367–373. https://doi.org/10.1016/S1001-0742(09)60117-0
Yetis, U., Dolek, A., Dilek, F. B. and Ozcengiz, G., 2000. The removal of Pb(II) by Phanerochaete chrysosporium. Water Research, 34(16), 4090–4100. https://doi.org/10.1016/S0043-1354(00)00155-X
Zafar, S., Aqil, F. and Ahmad, I., 2007. Metal tolerance and biosorption potential of filamentous fungi isolated from metal contaminated agricultural soil. Bioresource Technology, 98(13), 2557–2561. https://doi.org/10.1016/j.biortech.2006.09.051
Zhang, S., Zhang, X., Chang, C., Yuan, Z., Wang, T., Zhao, Y. and Li, X., 2016. Improvement of tolerance to lead by filamentous fungus Pleurotus ostreatus HAU-2 and its oxidative responses. Chemosphere, 150, 33–39. https://doi.org/10.1016/j.chemosphere.2016.02.003
Zucconi, L., Ripa, C., Alianiello, F., Benedetti, A., and Onofri, S., 2003. Lead resistance sorption accumulation in a Paecilomyces lilacinus strain. Biology and Fertility of Soils, 37(1), 17–22. https://doi.org/10.1007/s00374-002-0555-4
DOI: https://doi.org/10.26789/AEB.2019.01.004
Refbacks
- There are currently no refbacks.
Copyright (c) 2019 Zomesh Artus Nath Maini, Zomesh Artus Nath Maini, Kiara Marie J. Aribal, Regine Marinelli A. Narag, Jeorgina Kamella Luanshya T. Melad, Juan Angelo D. Frejas, Luis Alfonso M. Arriola, Pia Clarisse Ramos Gulpeo, Ian A. Navarrete, Crisanto M. Lopez
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.