Molecular characterization of a polycyclic aromatic hydrocarbons (PAHs) degrader, Burkholderia contaminans strain P14, isolated from aged oil-contaminated soil in Kuwait
Abstract
Keywords
Full Text:
References
Afzal, M., Khan, S., Iqbal, S., Mirza, M.S., Khan, Q.M., 2013. Inoculation method affects colonization and activity of Burkholderia phytofirmans PsJN during phytoremediation of diesel-contaminated soil. International Biodeterioration & Biodegradation, 85: 331-336.
http://doi.org/10.1016/j.ibiod.2013.08.022
Ahn, Y, Kim, J.M., Ahn, H., Lee, Y.-J., LiPuma, J.J., Hussong, D., Cerniglia, C.E., 2014. Evaluation of liquid and solid culture media for the recovery and enrichment of Burkholderia cenocepacia from distilled water. Journal of Industrial Microbiology and Biotechnology, 41: 1109-1118.
http://doi.org/10.1007/s10295-014-1442-3
Alegbeleye, O.O., Opeolu, B.O., Jackson, V.A., 2017. Polycyclic Aromatic Hydrocarbons: A Critical Review of Environmental Occurrence and Bioremediation. Environmental Management, 60: 758-783.
http://doi.org/10.1007/s00267-017-0896-2
Ali, N., Dashti, N., Al-Mailem, D., Eliyas, M., Radwan, S., 2011. Indigenous soil bacteria with the combined potential for hydrocarbon consumption and heavy metal resistance. Environmental Science and Pollution Research, 19: 812-820.
http://doi.org/10.1007/s11356-011-0624-z
AL-Saleh, E., Akbar, A., 2015. Occurrence of Pseudomonas aeruginosa in Kuwait soil. Chemosphere, 120: 100-107.
http://doi.org/10.1016/j.chemosphere.2014.06.031
Al-Yakoob, S.N., Saeed, T., Al-Hashash, H., 1994. Polycyclic aromatic hydrocarbons in fish: Exposure assessment for Kuwaiti consumers after the gulf oil spill of 1991. Environment International, 20: 221-227.
http://doi.org/10.1016/0160-4120(94)90139-2
Auffret, M., Labbé, D., Thouand, G, Greer, C.W., Fayolle-Guichard, F., 2009. Degradation of a mixture of hydrocarbons, gasoline, and diesel oil additives by Rhodococcus aetherivorans and Rhodococcus wratislaviensis. Applied and Environmental Microbiology, 75: 7774-7782.
http://doi.org/10.1128/AEM.01117-09
Ausuri, J., Vitale, G.A., Coppola, D., Palma Esposito, F., Buonocore, C., de Pascale, D., 2021. Assessment of the Degradation Potential and Genomic Insights towards Phenanthrene by Dietzia psychralcaliphila JI1D. Microorganisms, 9: 1327.
http://doi.org/10.3390/microorganisms9061327
Barriault, D., Sylvestre, M., 2004. Evolution of the Biphenyl Dioxygenase BphA from Burkholderia xenovorans LB400 by Random Mutagenesis of Multiple Sites in Region III. Journal of Biological Chemistry, 279: 47480-8.
http://doi.org/10.1074/jbc.m406805200
Bragina, P.S., Bulacheva, M.P., 2011. Youth Readings Named in Honor of Dokuchaev (St. Petersburg): 114-115.
Bushnell, B., 2019. BBTools.
http://jgi.doe.gov/data-and-tools/bbtools/
Cauduro, G.P., Leal, A.L., Lopes, T.F., Marmitt, M., Valiati, V.H., 2020. Differential Expression and PAH Degradation: What Burkholderia vietnamiensis G4 Can Tell Us? International Journal of Microbiology, 2020: 8831331.
http://doi.org/10.1155/2020/8831331
Cheng, Y., Chen, Y., Jiang, Y., Jiang, L., Sun, L., Li, L., Huang, J., 2016. Migration of BTEX and Biodegradation in Shallow Underground Water through Fuel Leak Simulation. BioMed Research International, 2016: 7040872.
http://doi.org/10.1155/2016/7040872
Cohen-Bazire, G., Sistrom, W.R., Stanier, R.Y., 1957. Kinetic studies of pigment synthesis by non-sulfur purple bacteria. Journal of Cellular and Comparative Physiology, 49: 25-68.
http://doi.org/10.1002/jcp.1030490104
Dai, C., Han, Y., Duan, Y., Lai, X., Fu, R., Liu, S., Leong, K.H., Tu, Y., Zhou, L., 2022. Review on the contamination and remediation of polycyclic aromatic hydrocarbons (PAHs) in coastal soil and sediments. Environmental Research, 205: 112423.
http://doi.org/10.1016/j.envres.2021.112423
Darma, U.Z., Aziz, N.Z.A., Zulkefli, S.Z., Mustafa, M., 2016. Identification of phenanthrene and pyrene degrading bacteria from used engine oil contaminated soil. International Journal of Scientific and Engineering Research, 7(3): 680-686
Deng, P., Wang, X., Baird, S.M., Showmaker, K.C., Smith, L., Peterson, D.G., Lu, S., 2016. Comparative genome-wide analysis reveals that Burkholderia contaminans MS14 possesses multiple antimicrobial biosynthesis genes but not major genetic loci required for pathogenesis. Microbiologyopen, 5: 353-369.
http://doi.org/10.1002/mbo3.333
Elufisan, T.O., Rodríguez-Luna, I.C., Oyedara, O.O., Sánchez-Varela, A., Hernández-Mendoza, A, Dantán, G.E., Paz-González, A.D., Muhammad, K., River,a G., Villalobos-Lopez, M.A., Guo, X., 2020. The Polycyclic Aromatic Hydrocarbon (PAH) degradation activities and genome analysis of a novel strain Stenotrophomonas sp. Pemsol isolated from Mexico. PeerJ, 8: e8102-e8102.
http://doi.org/10.7717/peerj.8102
Gerischer, U., Segura, A., Ornston, L.N., 1998. PcaU, a transcriptional activator of genes for protocatechuate utilization in Acinetobacter. Journal of Bacteriology, 180: 1512-1524.
http://doi.org/10.1128/JB.180.6.1512-1524.1998
Gong, B., Wu, P., Huang, Z., Li, Y., Dang, Z., Ruan, B., Kang, C., Zhu, N., 2016. Enhanced degradation of phenol by Sphingomonas sp. GY2B with resistance towards suboptimal environment through adsorption on kaolinite. Chemosphere, 148: 388-394.
http://doi.org/10.1016/j.chemosphere.2016.01.003
Himmelberg, A.M., Brüls, T., Farmani, Z., Weyrauch, P., Barthel, G., Schrader, W., Meckenstock, R.U., 2018. Anaerobic degradation of phenanthrene by a sulfate-reducing enrichment culture. Environmental Microbiology, 20: 3589-3600.
http://doi.org/10.1111/1462-2920.14335
Ho, C.-C., Lau, C.C.Y., Martelli, P., Chan, S.-Y., Tse, C.W.S., Wu, A.K.L., Yuen, K.-Y., Lau, S.K.P., Woo, P.C.Y., 2011. Novel pan-genomic analysis approach in target selection for multiplex PCR identification and detection of Burkholderia pseudomallei, Burkholderia thailandensis, and Burkholderia cepacia complex species: a proof-of-concept study. Journal of Clinical Microbiology, 49: 814-821.
http://doi.org/10.1128/JCM.01702-10
Isaac, P., Alessandrello, M.J., Macedo, A.J., Estévez, M.C., Ferrero, M.A., 2017. Pre-exposition to polycyclic aromatic hydrocarbons (PAHs) enhance biofilm formation and hydrocarbon removal by native multi-species consortium. Journal of Environmental Chemical Engineering, 5: 1372-1378.
http://doi.org/10.1016/j.jece.2017.02.031
Jacques, R.J.S., Okeke, B.C., Bento, F.M., Peralba, M.C.R., Camargo, F.A.O., 2009. Improved Enrichment and Isolation of Polycyclic Aromatic Hydrocarbons (PAH)-Degrading Microorganisms in Soil Using Anthracene as a Model PAH. Current Microbiology, 58: 628-634.
http://doi.org/10.1007/s00284-009-9381-3
Kim, T.J., Lee, E.Y., Kim, Y.J., Cho, K.-S., Ryu, H.W., 2003. Degradation of polyaromatic hydrocarbons by Burkholderia cepacian 2A-12. World Journal of Microbiology and Biotechnology, 19(4): 411-417.
https://doi.org/10.1023/a:1023998719787
Kimbrough, D.E., Wakakuwa, J.R., 1989. Acid digestion for sediments, sludges, soils, and solid wastes. A proposed alternative to EPA SW 846 Method 3050. Environmental Science & Technology, 23: 898-900.
http://doi.org/10.1021/es00065a021
Kumar, S., Stecher, G., Li, M., Knyaz, C., Tamura, K., 2018. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Molecular Biology and Evolution, 35: 1547-1549.
http://doi.org/10.1093/molbev/msy096
Kuppusamy, S., Thavamani, P., Megharaj, M., Lee, Y.B., Naidu, R., 2016. Polyaromatic hydrocarbon (PAH) degradation potential of a new acid tolerant, diazotrophic P-solubilizing and heavy metal resistant bacterium Cupriavidus sp. MTS-7 isolated from long-term mixed contaminated soil. Chemosphere, 162: 31-39.
http://doi.org/10.1016/j.chemosphere.2016.07.052
Kuske, C.R., Barns, S.M., Busch, J.D., 1997. Diverse uncultivated bacterial groups from soils of the arid southwestern United States that are present in many geographic regions. Applied and Environmental Microbiology, 63: 3614-3621.
http://doi.org/10.1128/aem.63.9.3614-3621.1997
Ladino-Orjuela, G., Gomes, E., da Silva, R., Salt, C., Parsons, J.R., 2016. Metabolic Pathways for Degradation of Aromatic Hydrocarbons by Bacteria. Reviews of Environmental Contamination and Toxicology,237: 105-121.
http://doi.org/10.1007/978-3-319-23573-8_5
Lahkar, J., Deka, H., 2016. Isolation of Polycyclic Aromatic Hydrocarbons (PAHs) Degrading Fungal Candidate from Oil-Contaminated Soil and Degradation Potentiality Study on Anthracene. Polycyclic Aromatic Compounds, 37: 141-147.
http://doi.org/10.1080/10406638.2016.1220957
Ledra, D., 2011. Polycyclic aromatic hydrocarbons (PAHs) Factsheet; European Commission: Brussels, Belgium, 27.
Lee, Y., Lee, Y., Jeon, C.O., 2019. Biodegradation of naphthalene, BTEX, and aliphatic hydrocarbons by Paraburkholderia aromaticivorans BN5 isolated from petroleum-contaminated soil. Scientific Reports, 9: 860.
http://doi.org/10.1038/s41598-018-36165-x
Li, J., Zhang, D., Song, M., Jiang, L., Wang, Y., Luo, C., Zhang, G., 2017. Novel bacteria capable of degrading phenanthrene in activated sludge revealed by stable-isotope probing coupled with high-throughput sequencing. Biodegradation, 28: 423-436.
http://doi.org/10.1007/s10532-017-9806-9
Li, Y., Li, W., Ji, L., Song, F., Li, T., Fu, X., Li, Q., Xing, Y., Zhang, Q., Wang, J., 2022. Effects of Salinity on the Biodegradation of Polycyclic Aromatic Hydrocarbons in Oilfield Soils Emphasizing Degradation Genes and Soil Enzymes. Frontiers in Microbiology, 12: 824319.
http://doi.org/10.3389/fmicb.2021.824319
Liu, L., Li, W., Song, W., Guo, M., 2018. Remediation techniques for heavy metal-contaminated soils: Principles and applicability. Science of the Total Environment, 633: 206-219.
http://doi.org/10.1016/j.scitotenv.2018.03.161
Liu, X.-X., Hu, X., Cao, Y., Pang, W.-J., Huang, J.-Y., Guo, P., Huang, L., 2019. Biodegradation of Phenanthrene and Heavy Metal Removal by Acid-Tolerant Burkholderia fungorum FM-2. Frontiers in Microbiology, 10: 408.
http://doi.org/10.3389/fmicb.2019.00408
Mackay, D., Callcott, D., 1998. Partitioning and Physical Chemical Properties of PAHs. PAHs and Related Compounds, 325-345.
http://doi.org/10.1007/978-3-540-49697-78
Mallick, S., Chakraborty, J., Dutta, T.K., 2010. Role of oxygenases in guiding diverse metabolic pathways in the bacterial degradation of low-molecular-weight polycyclic aromatic hydrocarbons: A review. Critical Reviews in Microbiology, 37: 64-90.
http://doi.org/10.3109/1040841x.2010.512268
Methods for the chemical analysis of water and wastes (MCAWW) (EPA/600/4-79/020).
Moriya, Y., Itoh, M., Okuda, S., Yoshizawa, A.C., Kanehisa, M., 2007. KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Research, 35: W182-W185.
http://doi.org/10.1093/nar/gkm321
Morya, R., Salvachúa, D., Thakur, I.S., 2020. Burkholderia: An Untapped but Promising Bacterial Genus for the Conversion of Aromatic Compounds. Trends in Biotechnology, 38: 963-975.
http://doi.org/10.1016/j.tibtech.2020.02.008
Ni, N., Shi, R., Liu, Z., Bian, Y., Wang, F., Song, Y., Jiang, X., 2018. Effects of biochars on the bioaccessibility of phenanthrene/pyrene/zinc/lead and microbial community structure in a soil under aerobic and anaerobic conditions. Journal of Environmental Sciences, 63: 296-306.
http://doi.org/10.1016/j.jes.2017.05.023
Nogales, J., García, J.L., Díaz, E., 2017. Degradation of Aromatic Compounds in Pseudomonas: A Systems Biology View. Aerobic Utilization of Hydrocarbons, Oils and Lipids, 1-49.
http://doi.org/10.1007/978-3-319-39782-5_32-1
Nzila, A., Musa, M.M., Sankara, S., Al-Momani, M., Xiang, L., Li, Q.X., 2021. Degradation of benzo[a]pyrene by halophilic bacterial strain Staphylococcus haemoliticus strain 10SBZ1A. PLoS One, 16(2): e0247723-e0247723.
http://doi.org/10.1371/journal.pone.0247723
Oberoi, A.S., Philip, L., Bhallamudi, S.M., 2015. Biodegradation of Various Aromatic Compounds by Enriched Bacterial Cultures: Part A-Monocyclic and Polycyclic Aromatic Hydrocarbons. Applied Biochemistry and Biotechnology, 176: 1870-1888.
http://doi.org/10.1007/s12010-015-1684-1
Obi, L.U., Atagana, H.I., Adeleke, R.A., 2016. Isolation and characterisation of crude oil sludge degrading bacteria. Springerplus, 5(1): 1946.
http://doi.org/10.1186/s40064-016-3617-z
Ohtsubo, Y., Nonoyama, S., Ogawa, N., Kato, H., Nagata, Y., Tsuda, M., 2016. Complete genome sequence of Burkholderia caribensis Bcrs1W (NBRC110739), a strain co-residing with phenanthrene degrader Mycobacterium sp. EPa45. Journal of Biotechnology, 228: 67-68.
http://doi.org/10.1016/j.jbiotec.2016.04.042
Oves, M., Khan, M.S., Zaidi, A., Ahmad, E., 2012. Soil Contamination, Nutritive Value, and Human Health Risk Assessment of Heavy Metals: An Overview. Toxicity of Heavy Metals to Legumes and Bioremediation, 2012: 1-27.
http://doi.org/10.1007/978-3-7091-0730-0_1
Podsiadło, Ł., Krzy´sko-Łupicka, T., 2013. Techniques of petroleum compounds bioremediation and methods of assessment of their effectiveness. Inz. Ochr. Srod. 2013, 16: 459-467. (In Polish)
Rabani, M.S., Sharma, R., Singh, R., Gupta, M.K., 2020. Characterization and Identification of Naphthalene Degrading Bacteria Isolated from Petroleum Contaminated Sites and Their Possible Use in Bioremediation. Polycyclic Aromatic Compounds, 42: 978-989.
http://doi.org/10.1080/10406638.2020.1759663
Radwan, S.S., Sorkhoh, N.A., El‐Nemr, I.M., El‐Desouky, A.F., 1997. A feasibility study on seeding as a bioremediation practice for the oily Kuwaiti desert. Journal of Applied Microbiology, 83: 353-358.
http://doi.org/10.1046/j.1365-2672.1997.00237.x
Rahmeh, R., Akbar, A., Kumar, V., Al-Mansour, H., Kishk, M., Ahmed, N., Al-Shamali, M., Boota, A., Al-Ballam, Z., Shajan, A., Al-Okla, N., 2021. Insights into Bacterial Community Involved in Bioremediation of Aged Oil-Contaminated Soil in Arid Environment. Evolutionary Bioinformatics, 17: 11769343211016888.
http://doi.org/10.1177/11769343211016887
Rashid, M.I., Mujawar, L.H., Shahzad, T., Almeelbi, T., Ismail, I.M.I., Oves, M., 2015. Bacteria and fungi can contribute to nutrients bioavailability and aggregate formation in degraded soils. Microbiological Research, 183: 26-41.
http://doi.org/10.1016/j.micres.2015.11.007
Revathy, T., Jayasri, M.A., Suthindhiran, K., 2015. Biodegradation of PAHs by Burkholderia sp. VITRSB1 Isolated from Marine Sediments. Scientifica (Cairo), 2015: 867586.
http://doi.org/10.1155/2015/867586
Seemann, T., 2014. Prokka: rapid prokaryotic genome annotation. Bioinformatics, 30: 2068-2069.
http://doi.org/10.1093/bioinformatics/btu153
Seo, J.-S., Keum, Y.-S., Hu, Y., Lee, S.-E., Li, Q.X., 2006. Degradation of phenanthrene by Burkholderia sp. C3: initial 1,2- and 3,4-dioxygenation and meta- and ortho-cleavage of naphthalene-1,2-diol. Biodegradation, 18: 123-131.
http://doi.org/10.1007/s10532-006-9048-8
Shaheen, S.M., Antoniadis, V., Kwon, E., Song, H., Wang, S.-L., Hseu, Z.-Y., Rinklebe, J., 2020. Soil contamination by potentially toxic elements and the associated human health risk in geo- and anthropogenic contaminated soils: A case study from the temperate region (Germany) and the arid region (Egypt). Environmental Pollution, 262: 114312.
http://doi.org/10.1016/j.envpol.2020.114312
Suárez-Moreno, Z.R., Caballero-Mellado, J., Coutinho, B.G., Mendonça-Previato, L., James, EK, Venturi, V., 2011. Common Features of Environmental and Potentially Beneficial Plant-Associated Burkholderia. Microbial Ecology, 63: 249-266.
http://doi.org/10.1007/s00248-011-9929-1
Telesiński, A., Kiepas-Kokot, A., 2021. Five-Year Enhanced Natural Attenuation of Historically Coal-Tar-Contaminated Soil: Analysis of Polycyclic Aromatic Hydrocarbon and Phenol Contents. International Journal of Environmental Research and Public Health, 18: 2265.
http://doi.org/10.3390/ijerph18052265
Tirkey, S.R., Ram, S., Mishra, S., 2021. Naphthalene degradation studies using Pseudomonas sp. strain SA3 from Alang-Sosiya ship breaking yard, Gujarat. Heliyon, 7: e06334-e06334.
http://doi.org/10.1016/j.heliyon.2021.e06334
Vogel, T.M., 1996. Bioaugmentation as a soil bioremediation approach. Current opinion in biotechnology, 7: 311-316.
http://doi.org/10.1016/s0958-1669(96)80036-x
Wang, H., Zhang, H., Zhang, K., Qian, Y., Yuan, X., Ji, B., Han, W., 2020. Membrane fouling mitigation in different biofilm membrane bioreactors with pre-anoxic tanks for treating mariculture wastewater. Science of the Total Environment, 724: 138311.
http://doi.org/10.1016/j.scitotenv.2020.138311
Wang, Z., Wang, W., Li, Y., Yang, Q., 2019. Co-metabolic degradation of naphthalene and pyrene by acclimated strain and competitive inhibition kinetics. Journal of Environmental Science and Health, Part B, 54: 505-513.
http://doi.org/10.1080/03601234.2019.1586033
Yadav, M., Lomash, A., Kapoor, S., Pandey, R., Chauhan, N.S., 2021. Mapping of the benzoate metabolism by human gut microbiome indicates food-derived metagenome evolution. Scientific Reports, 11: 5561.
http://doi.org/10.1038/s41598-021-84964-6
Yoon, S.-H., Ha, S., Lim, J., Kwon, S., Chun, J., 2017. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek, 110: 1281-1286.
http://doi.org/10.1007/s10482-017-0844-4
Zhang, X.-X., Cheng, S.-P., Zhu, C.-J., Sun, S.-L., 2006. Microbial PAH-Degradation in Soil: Degradation Pathways and Contributing Factors. Pedosphere, 16: 555-565.
http://doi.org/10.1016/s1002-0160(06)60088-x
Zhang, Z., Hou, Z., Yang, C., Ma, C., Tao, F., Xu, P., 2011. Degradation of n-alkanes and polycyclic aromatic hydrocarbons in petroleum by a newly isolated Pseudomonas aeruginosa DQ8. Bioresource Technology, 102: 4111-4116.
http://doi.org/10.1016/j.biortech.2010.12.064
Zhao, Q., Bai, J., Gao, Y., Zhao, H., Zhang, G., Cui, B., 2020. Shifts in the soil bacterial community along a salinity gradient in the Yellow River Delta. Land Degradation & Development, 31: 2255-2267.
http://doi.org/10.1002/ldr.3594
DOI: https://doi.org/10.26789/AEB.2022.02.005
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Abrar Akbar et al.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.