The diversity of hydrogen-producing microorganisms in a high temperature oil reservoir and its potential role in promoting the in situ bioprocess
Abstract
Keywords
Full Text:
References
McInerney M J, Sieber J R and Gunsalus R P, 2009, Syntrophy in anaerobic global carbon cycles. Current Opinion in Biotechnology, vol.20(6): 623–632. http://dx.doi.org/10.1016/j.copbio.2009.10.001.
Schink B, 1997, Energetics of syntrophic cooperation in methanogenic degradation. Microbiology and Molecular Biology Reviews, vol.61(2): 262–280.
Boyd E S, Hamilton T L, Swanson K D, et al., 2014, [FeFe]-hydrogenase abundance and diversity along a vertical redox gradient in Great Salt Lake, USA. International Journal of Molecular Sciences, vol.15(12): 21947– 21966. http://dx.doi.org/10.3390/ijms151221947.
Thauer R K, Klein A R and Hartmann G C, 1996, Reactions with molecular hydrogen in microorganisms: evidence for a purely organic hydrogenation catalyst. Chemical Reviews, vol.96(7): 3031–3042. http://dx.doi.org/10.1021/cr9500601.
Rudyk S N and Søgaard E G, 2010, How specific microbial communities benefit the oil industry: microbial-enhanced oil recovery (MEOR), in Whitby C and Skovhus T L (eds), Applied Microbiology and Molecular Biology in Oilfield Systems. Springer Netherlands, Milton Keynes UK, 179–187. http://dx.doi.org/10.1007/978-90-481-9252-6_21.
Sen R, 2008, Biotechnology in petroleum recovery: the microbial EOR. Progress in Energy and Combustion Science, vol.34(6): 714–724.
http://dx.doi.org/10.1016/j.pecs.2008.05.001.
Grigoryan A A, Cornish S L, Buziak B, et al., 2008, Competitive oxidation of volatile fatty acids by sulfate- and nitrate-reducing bacteria from an oil field in Argentina. Applied and Environmental Microbiology, vol.74(14): 4324–4335. http://dx.doi.org/10.1128/AEM.00419-08.
Hubert C and Voordouw G, 2007, Oil field souring control by nitrate-reducing Sulfurospirillum spp. that out-compete sulfate-reducing bacteria for organic electron donors. Applied and Environmental Microbiology, vol.73(8): 2644–2652. http://dx.doi.org/10.1128/AEM.02332-06.
Liu J-F, Sun X-B, Yang G-C, et al., 2015, Analysis of microbial communities in the oil reservoir subjected to CO2-flooding by using functional genes as molecular biomarkers for microbial CO2 sequestration. Frontiers in Microbiology, vol.6: 236. http://dx.doi.org/10.3389/fmicb.2015.00236.
Mayumi D, Dolfing J, Sakata S, et al., 2013, Carbon dioxide concentration dictates alternative methanogenic pathways in oil reservoirs. Nature Communications, vol.4: 1998. http://dx.doi.org/10.1038/ncomms2998.
Vignais P M and Billoud B, 2007, Occurrence, classification, and biological function of hydrogenases: an overview. Chemical Reviews, vol.107(10): 4206–4272. http://dx.doi.org/10.1021/cr050196r.
Kim J Y H and Cha H J, 2013, Recent progress in hydrogenase and its biotechnological application for viable hydrogen technology. Korean Journal of Chemical Engineering, vol.30(1): 1–10. http://dx.doi.org/10.1007/s11814-012-0208-8.
Corr M J and Murphy J A, 2011, Evolution in the understanding of [Fe]-hydrogenase. Chemical Society Reviews, vol.40(5): 2279–2292. http://dx.doi.org/10.1039/c0cs00150c.
Boyd E S, Spear J R and Peters J W, 2009, [FeFe] hydrogenase genetic diversity provides insight into molecular adaptation in a saline microbial mat community. Applied and Environmental Microbiology, vol.75(13): 4620–4623. http://dx.doi.org/10.1128/AEM.00582-09.
Fang H, Zhang T and Liu H, 2002, Microbial diversity of a mesophilic hydrogen-producing sludge. Applied Microbiology and Biotechnology, vol.58(1): 112–118. http://dx.doi.org/10.1007/s00253-001-0865-8.
Schmidt O, Drake H L and Horn M A, 2010, Hitherto unknown [Fe-Fe]-hydrogenase gene diversity in anaerobic and anoxic enrichments from a moderately acidic fen. Applied and Environmental Microbiology, vol.76(6): 2027–2031. http://dx.doi.org/10.1128/AEM.02895-09.
Xing D, Ren N and Rittmann B E, 2008, Genetic diversity of hydrogen-producing bacteria in an acidophilic ethanol-H-2-coproducing system, analyzed using the [Fe]-hydrogenase gene. Applied and Environmental Microbiology, vol.74(4): 1232–1239. http://dx.doi.org/10.1128/AEM.01946-07.
Boyd E S, Hamilton T L, Spear J R, et al., 2010, [FeFe]- hydrogenase in Yellowstone National Park: Evidence for dispersal limitation and phylogenetic niche conservatism. The ISME Journal, vol.4(12): 1485–1495. http://dx.doi.org/10.1038/ismej.2010.76.
Baba R, Kimura M, Asakawa S, et al., 2014, Analysis of [FeFe]-hydrogenase genes for the elucidation of a hydrogen-producing bacterial community in paddy field soil. FEMS Microbiology Letters, vol.350(2): 249–256. http://dx.doi.org/10.1111/1574-6968.12335.
Wang L-Y, Duan R-Y, Liu J-F, et al., 2012, Molecular analysis of the microbial community structures in water-flooding petroleum reservoirs with different temperatures. Biogeosciences, vol.9(11): 4645–4659. http://dx.doi.org/10.5194/bg-9-4645-2012.
Guan J, Xia L-P, Wang L-Y, et al., 2013, Diversity and distribution of sulfate-reducing bacteria in four petroleum reservoirs detected by using 16S rRNA and dsrAB genes. International Biodeterioration and Biodegradation, vol.76: 58–66. http://dx.doi.org/10.1016/j.ibiod.2012.06.021.
Huber T, Faulkner G and Hugenholtz P, 2004, Bellerophon: a program to detect chimeric sequences in multiple sequence alignments. Bioinformatics, vol.20(14): 2317– 2319. http://dx.doi.org/10.1093/bioinformatics/bth226.
Yu Y, Breitbart M, McNairnie P, et al., 2006, FastGroupII: a web-based bioinformatics platform for analyses of large 16S rDNA libraries. BMC Bioinformatics, vol.7: 57. http://dx.doi.org/10.1186/1471-2105-7-57.
Altschul S F, Madden T L, Schäffer A A, et al., 1997, Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research, vol.25(17): 3389–3402. http://dx.doi.org/10.1093/nar/25.17.3389.
Tamura K, Peterson D, Peterson N, et al., 2011, MEGA5: Molecular Evolutionary Genetics Analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, vol.28(10): 2731–2739. http://dx.doi.org/10.1093/molbev/msr121.
Saitou N and Nei M, 1987, The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, vol.4(4): 406–425.
Wang L-Y, Gao C-X, Mbadinga S M, et al., 2011, Characterization of an alkane-degrading methanogenic enrichment culture from production water of an oil reservoir after 274 days of incubation. International Biodeterioration and Biodegradation, vol.65(3): 444–450. http://dx.doi.org/10.1016/j.ibiod.2010.12.010.
Chen S and Dong X, 2005, Proteiniphilum acetatigenes gen. nov., sp. nov., from a UASB reactor treating brewery wastewater. International Journal of Systematic and Evoutionary Microbiology, vol.55(Pt 6): 2257–2261. http://dx.doi.org/10.1099/ijs.0.63807-0.
Grabowski A, Nercessian O, Fayolle F, et al., 2005, Microbial diversity in production waters of a low-tem-perature biodegraded oil reservoir. FEMS Microbiology Ecology, vol.54(3): 427–443. http://dx.doi.org/10.1016/j.femsec.2005.05.007.
Mohd Yasin N H, Rahman N A A, Man H C, et al., 2011, Microbial characterization of hydrogen-producing bacteria in fermented food waste at different pH values. Inter-national Journal of Hydrogen Energy, vol.36(16): 9571– 9580. http://dx.doi.org/10.1016/j.ijhydene.2011.05.048.
Lee J-H, Lee D-G, Park J-I, et al., 2010, Bio-hydrogen production from a marine brown algae and its bacterial diversity. Korean Journal of Chemical Engineering, vol.27(1): 187–192.
http://dx.doi.org/10.1007/s11814-009-0300-x.
Hahnke S, Maus I, Wibberg D, et al., 2015, Complete genome sequence of the novel Porphyromonadaceae bacterium strain ING2-E5B isolated from a mesophilic lab- scale biogas reactor. Journal of Biotechnology, vol.193: 34–36. http://dx.doi.org/10.1016/j.jbiotec.2014.11.010.
Xu S-Y, He P-Q, Dewi S-Z, et al., 2013, Hydrogen-producing microflora and Fe-Fe hydrogenase diversities in seaweed bed associated with marine hot springs of Kalianda, Indonesia. Current Microbiology, vol.66(5): 499– 506. http://dx.doi.org/10.1007/s00284-013-0302-0.
Ley R E, Harris J K, Wilcox J, et al., 2006, Unexpected diversity and complexity of the Guerrero Negro hypersaline microbial mat. Applied and Environmental Microbiology, vol.72(5): 3685–3695. http://dx.doi.org/10.1128/aem.72.5.3685-3695.2006.
Ratti R P, Delforno T P, Sakamoto I K, et al., 2015, Thermophilic hydrogen production from sugarcane bagasse pretreated by steam explosion and alkaline delignification. International Journal of Hydrogen Energy, vol.40(19): 6296–6306. http://dx.doi.org/10.1016/j.ijhydene.2015.03.067.
Im W-T, Kim D-H, Kim K-H, et al., 2012, Bacterial community analyses by pyrosequencing in dark fermentative H2-producing reactor using organic wastes as a feedstock. International Journal of Hydrogen Energy, vol.37(10): 8330–8337. http://dx.doi.org/10.1016/j.ijhydene.2012.02.167.
Feng W-W, Liu J-F, Gu J-D, et al., 2011, Nitrate-reducing community in production water of three oil reservoirs and their responses to different carbon sources revealed by nitrate-reductase encoding gene (napA). International Biodeterioration and Biodegradation, vol.65(7): 1081– 1086. http://dx.doi.org/10.1016/j.ibiod.2011.05.009.
Wang L-Y, Ke W-J, Sun X-B, et al., 2014, Comparison of bacterial community in aqueous and oil phases of water-flooded petroleum reservoirs using pyrosequencing and clone library approaches. Applied Microbiology and Biotechnology, vol.98(9): 4209–4221. http://dx.doi.org/10.1007/s00253-013-5472-y.
Jayasinghearachchi H S and Lal B, 2011, Oceanotoga teriensis gen. nov., sp. nov., a thermophilic bacterium isolated from offshore oil-producing wells. International Journal of Systematic and Evolutionary Microbiology, vol.61(Pt 3): 554–560. http://dx.doi.org/10.1099/ijs.0.018036-0.
Miranda-Tello E, Fardeau M L, Thomas P, et al., 2004, Petrotoga mexicana sp. nov., a novel thermophilic, anaerobic and xylanolytic bacterium isolated from an oil- producing well in the Gulf of Mexico. International Journal of Systematic and Evolutionary Microbiology, vol54(Pt 1): 169–174. http://dx.doi.org/10.1099/ijs.0.02702-0.
Miranda-Tello E, Fardeai M-L, Joullan C, et al., 2007, Petrotoga halophila sp. nov., a thermophilic, moderately halophilic, fermentative bacterium isolated from an off-shore oil well in Congo. International Journal of Systematic and Evolutionary Microbiology, vol.57(Pt 1): 40– 44. http://dx.doi.org/10.1099/ijs.0.64516-0.
L'Haridon S, Miroshnichenko M L, Hippe H, et al., 2002, Petrotoga olearia sp. nov. and Petrotoga sibirica sp. nov., two thermophilic bacteria isolated from a continental petroleum reservoir in Western Siberia. International Jour-nal of Systematic and Evolutionary Microbiology, vol. 52(Pt 5): 1715–1722. http://dx.doi.org/10.1099/ijs.0.02153-0.
Lien T, Madsen M, Rainey F A, et al., 1998, Petrotoga mobilis sp. nov., from a North Sea oil production well. International Journal of Systematic and Evolutionary Microbiology, vol.48(Pt 3): 1007–1013. http://dx.doi.org/10.1099/00207713-48-3-1007.
Takahata Y, Nishijima M, Hoaki T, et al., 2001, Thermo-toga petrophila sp. nov. and Thermotoga naphthophila sp. nov., two hyperthermophilic bacteria from the Kubiki oil reservoir in Niigata, Japan. International Journal of Systematic and Evolutionary Microbiology, vol.51(Pt 5): 1901–1909. http://dx.doi.org/10.1099/00207713-51-5-1901.
Ravot G, Magot M, Fardeau M-L, et al., 1995, Thermo-toga elfii sp. nov., a novel thermophilic bacterium from an African oil-producing well. International Journal of Systematic and Evolutionary Microbiology, vol.45(2): 308–314. http://dx.doi.org/10.1099/00207713-45-2-308.
Fardeau M-L, Ollivier B, Patel B K C, et al., 1997, Thermotoga hypogea sp. nov., a xylanolytic, thermophilic bacterium from an oil-producing well. International Journal of Systematic and Evolutionary Microbiology, vol. 47(4): 1013–1019. http://dx.doi.org/10.1099/00207713-47-4-1013.
Jayasinghearachchi H S, Sarma P M and Lal B, 2012, Biological hydrogen production by extremely thermophilic novel bacterium Thermoanaerobacter mathranii A3N isolated from oil producing well. International Jou-rnal of Hydrogen Energy, vol. 37(7): 5569–5578. http://dx.doi.org/10.1016/j.ijhydene.2011.12.145.
48. Fardeau M L, Magot M, Patel B K C, et al., 2000, Thermoanaerobacter subterraneus sp. nov., a novel thermophile isolated from oilfield water. International Journal of Systematic and Evolutionary Microbiology, vol. 50(Pt 6): 2141–2149. http://dx.doi.org/10.1099/00207713-50-6-2141.
Cayol J L, Ollivier B, Patel B K C, et al., 1995, Description of Thermoanaerobacter brockii subsp. lactiethylicus subsp. nov., isolated from a deep subsurface French oil well, a proposal to reclassify Thermoanaerobacter finniias Thermoanaerobacter brockii subsp. finnii comb. nov., and an emended description of Thermoanaerobacter b-rockii. International Journal of Systematic and Evolutionary Microbiology, vol.45(4): 783–789. http://dx.doi.org/10.1099/00207713-45-4-783.
Magot M, Fardeau M-L, Arnauld O, et al., 1997, Spiro-chaeta smaragdinae sp. nov., a new mesophilic strictly anaerobic spirochete from an oil field. FEMS Microbiology Letters, vol.155(2): 185–191. http://dx.doi.org/10.1016/S0378-1097(97)80008-0.
Maune M W and Tanner R S, 2012, Description of Anaerobaculum hydrogeniformans sp. nov., an anaerobe that produces hydrogen from glucose, and emended description of the genus Anaerobaculum. International Journal of Systematic and Evolutionary Microbiology, vol.62(Pt 4): 832–838. http://dx.doi.org/10.1099/ijs.0.024349-0.
Greening C, Biswas A, Carere C R, et al., 2016, Genomic and metagenomic surveys of hydrogenase distribution indicate H2 is a widely utilised energy source for microbial growth and survival. The ISME Journal, vol.10(3): 761–777. http://dx.doi.org/10.1038/ismej.2015.153.
Hawkes F R, Dinsdale R, Hawkes D L, et al., 2002, Sustainable fermentative hydrogen production: challenges for process optimisation. International Journal of Hydrogen Energy, vol.27(11–12): 1339–1347. http://dx.doi.org/10.1016/S0360-3199(02)00090-3.
Levin D B, Pitt L and Love M, 2004, Biohydrogen production: Prospects and limitations to practical application. International Journal of Hydrogen Energy, vol.29(2): 173–185. http://dx.doi.org/10.1016/S0360-3199(03)00094-6.
Taguchi F, Mizukami N, Saito-Taki T, et al., 1995, Hydrogen production from continuous fermentation of xylose during growth of Clostridium sp. strain No. 2. Canadian Journal of Microbiology, vol.41(6): 536–540. http://dx.doi.org/10.1139/m95-071.
Lin P-Y, Whang L-M, Wu Y-R, et al., 2007, Biological hydrogen production of the genus Clostridium: metabolic study and mathematical model simulation. International Journal of Hydrogen Energy, vol.32(12): 1728–1735. http://dx.doi.org/10.1016/j.ijhydene.2006.12.009.
Niimi T, Sugai Y, Sasaki K, et al., 2009, Canadian International Petroleum Conference 2009 and 60th Annual Technical Meeting of the Petroleum Society, Volume 1 of 2, June 16–18, 2009: Basic study on the microbial conversion of CO2 into CH4 in depleted oil reservoir by using hydrogen-producing bacteria and hydrogenotrophic methanogens. Society of Petroleum Engineers, Richardson, Texas, 997–998.
Sugai Y, Purwasena I A, Sasaki K, et al., 2012, Experimental studies on indigenous hydrocarbon-degrading and hydrogen-producing bacteria in an oilfield for microbial restoration of natural gas deposits with CO2 sequestration. Journal of Natural Gas Science and Engineering, vol.5: 31–41. http://dx.doi.org/10.1016/j.jngse.2012.01.011.
Huang L, Yu L, Luo Z, et al., 2014, A microbial enhanced oil recovery trial in Huabei Oilfield in China. Petroleum Science and Technology, vol.32(5): 584–592. http://dx.doi.org/10.1080/10916466.2010.497788.
Bhupathiraju V K, McInerney M J and Knapp R M, 1993, Pretest studies for a microbially enhanced oil recovery field pilot in a hypersaline oil reservoir. Geomicrobiology Journal, vol.11(1): 19–34. http://dx.doi.org/10.1080/01490459309377929.
Zhang F, She Y-H, Li H-M, et al., 2012, Impact of an indigenous microbial enhanced oil recovery field trial on microbial community structure in a high pour point oil reservoir. Applied Microbiology and Biotechnology, vol. 95(3): 811–821. http://dx.doi.org/10.1007/s00253-011-3717-1.
Arora P, Ranade D R and Dhakephalkar P K, 2014, Development of a microbial process for the recovery of petroleum oil from depleted reservoirs at 91–96 °C. Bioresource Technology, vol.165: 274–278. http://dx.doi.org/10.1016/j.biortech.2014.03.109.
DOI: https://doi.org/10.26789/AEB.2016.02.005
Refbacks
- There are currently no refbacks.
Copyright (c) 2016 Jin-Feng Liu, Serge Maurice Mbadinga, Wen-Ji Ke, Ji-Dong Gu, Bo-Zhong Mu
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.