Optimized xylose isomerase uptake and expression level in Saccharomyces cerevisiae for improving ethanol production

VIEWS - 732 (Abstract) 211 (PDF)
Mei Zhang, Wen-Jing Fan, Jing-Yu Wang, Li-Min Cao


The ability to engineer the yeast Saccharomyces cerevisiae to efficiently convert lignocellulosic biomass to ethanol remains a considerable challenge. Here, we propose a new reprogrammable strategy to optimize the expression level of the xylose isomerase (XI) gene with the induction of mutations in S. cerevisiae to improve efficient ethanol production and productivity. We sought to fine-tune the xylose uptake and catabolism abilities of S. cerevisiae during fermentation by improving efficiency of the xylose transporter, which was fused with four copies of the XI gene under the control of different promoters to obtain recombinant yeast strains. In fermentation experiments, the optimized strain CW9 cultured in yeast extract-peptone (YP) medium containing approximately 65 g/L glucose and 55 g/L xylose produced consistent ethanol yields of 0.45 g/g total sugar in about 72 h, which was close to 90% of the theoretical yield. These promising results indicate that strain CW9 is the best producer of ethanol from mixed sugar when synthetically regulating the xylose assimilation pathway. Overall, this study provides an optimal method to control XI expression levels to find better conditions for enhancing biofuel production.


xylose; promoter elements; transporter; ethanol; Saccharomyces cerevisiae

Full Text:



Bengtsson, O., Hahn-Hägerdal, B. and Gorwa-Grauslund, M.F., 2009. Xylose reductase from Pichia stipitis with altered coenzyme preference improves ethanolic xylose fermentation by recombinant Saccharomyces cerevisiae. Biotechnology for Biofuels, 2(1), 9.


Bond-Watts, B.B., Bellerose, R.J. and Chang, M.C., 2011. Enzyme mechanism as a kinetic control element for designing synthetic biofuel pathways. Nature Chemical Biology, 7(4), 222-227.


Brat, D., Boles, E. and Wiedemann, B., 2009. Functional expression of a bacterial xylose isomerase in Saccharomyces cerevisiae. Applied and Environmental Microbiology, 75(8), 2304-2311.


Demeke, M.M., Dietz, H., Li, Y., Foulquié-Moreno, M.R., Mutturi, S., Deprez, S., Den Abt, T., Bonini, B.M., Liden, G., Dumortier, F. and Verplaetse, A., 2013. Development of a D-xylose fermenting and inhibitor tolerant industrial Saccharomyces cerevisiae strain with high performance in lignocellulose hydrolysates using metabolic and evolutionary engineering. Biotechnology for Biofuels, 6(1), 89.


Eliasson, A., Christensson, C., Wahlbom, C.F. and Hahn-Hägerdal, B., 2000. Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1, XYL2, and XKS1 in mineral medium chemostat cultures. Applied and Environmental Microbiology, 66(8), 3381-3386.


Hou, J., Shen, Y., Li, X.P. and Bao, X.M., 2007. Effect of the reversal of coenzyme specificity by expression of mutated Pichia stipitis xylitol dehydrogenase in recombinant Saccharomyces cerevisiae. Letters in Applied Microbiology, 45(2), 184-189.


Jeffries, T.W., Grigoriev, I.V., Grimwood, J., Laplaza, J.M., Aerts, A., Salamov, A., Schmutz, J., Lindquist, E., Dehal, P., Shapiro, H., Jin, Y.S., Passoth, V. and Richardson, P.M., 2007. Genome sequence of the lignocellulose-bioconverting and xylose-fermenting yeast Pichia stipitis. Nature Biotechnology, 25(3), 319-326.


Johansson, B., Christensson, C., Hobley, T. and Hahn-Hägerdal, B., 2001. Xylulokinase overexpression in two strains of Saccharomyces cerevisiae also expressing xylose reductase and xylitol dehydrogenase and its effect on fermentation of xylose and lignocellulosic hydrolysate. Applied and Environmental Microbiology, 67(9), 4249-4255.


Kong, Q.X., Cao, L.M., Zhang, A.L. and Chen, X., 2007. Overexpressing GLT1 in gpd1Delta mutant to improve the production of ethanol of Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 73(6), 1382-1386.


Kuyper, M., Hartog, M.M., Toirkens, M.J., Almering, M.J., Winkler, A.A., van Dijken, J.P. and Pronk, J.T., 2005. Metabolic engineering of a xylose-isomerase-expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation. FEMS Yeast Research, 5(4-5), 399-409.


Lee, S.M., Jellison, T. and Alper, H.S., 2012. Directed evolution of xylose isomerase for improved xylose catabolism and fermentation in the yeast Saccharomyces cerevisiae. Applied and Environmental Microbiology, 78(16), 5708-5716.


Madhavan, A., Tamalampudi, S., Ushida, K., Kanai, D., Katahira, S., Srivastava, A., Fukuda, H., Bisaria, V.S. and Kondo, A., 2009. Xylose isomerase from polycentric fungus Orpinomyces: gene sequencing, cloning, and expression in Saccharomyces cerevisiae for bioconversion of xylose to ethanol. Applied Microbiology and Biotechnology, 82(6), 1067.


Nijland, J.G., Vos, E., Shin, H.Y., Waal, P.P., Klaassen, P. and Driessen, A.J., 2016. Improving pentose fermentation by preventing ubiquitination of hexose transporters in Saccharomyces cerevisiae. Biotechnology for Biofuels, 9(1), 158.


Olofsson, K., Runquist, D., Hahn-Hägerdal, B. and Lidén, G., 2011. A mutated xylose reductase increases bioethanol production more than a glucose/xylose facilitator in simultaneous fermentation and co-fermentation of wheat straw. Amb Express, 1(1), 4.


Reider Apel, A., Ouellet, M., Szmidt-Middleton, H., Keasling, J.D. and Mukhopadhyay, A., 2016. Evolved hexose transporter enhances xylose uptake and glucose/xylose co-utilization in Saccharomyces cerevisiae. Scientific Reports, 6, 19512.


Salis, H.M., Mirsky, E.A. and Voigt, C.A., 2009. Automated design of synthetic ribosome binding sites to control protein expression. Nature Biotechnology, 27(10), 946-950.


Saloheimo, A., Rauta, J., Stasyk, O.V., Sibirny, A.A., Penttilä, M. and Ruohonen, L., 2007. Xylose transport studies with xylose-utilizing Saccharomyces cerevisiae strains expressing heterologous and homologous permeases. Applied Microbiology and Biotechnology, 74(5), 1041-1052.


Shen, Y., Chen, X., Peng, B., Chen, L., Hou, J. and Bao, X., 2012. An efficient xylose-fermenting recombinant Saccharomyces cerevisiae strain obtained through adaptive evolution and its global transcription profile. Applied Microbiology and Biotechnology, 96(4), 1079-1091.


Subtil, T. and Boles, E., 2012. Competition between pentoses and glucose during uptake and catabolism in recombinant Saccharomyces cerevisiae. Biotechnology for Biofuels, 5(1), 14.


Thomik, T., Wittig, I., Choe, J.Y., Boles, E. and Oreb, M., 2017. An artificial transport metabolon facilitates improved substrate utilization in yeast. Nature Chemical Biology, 13(11), 1158-1163.


Xiong, M., Chen, G. and Barford, J., 2011. Alteration of xylose reductase coenzyme preference to improve ethanol production by Saccharomyces cerevisiae from high xylose concentrations. Bioresource Technology, 102(19), 9206-9215.


Young, E.M., Comer, A.D., Huang, H. and Alper, H.S., 2012. A molecular transporter engineering approach to improving xylose catabolism in Saccharomyces cerevisiae. Metabolic Engineering, 14(4), 401-411.


Yuan, T., Guo, Y., Dong, J., Li, T.Y., Zhou, T., Sun, K.W., Zhang, M., Wu, Q.Y., Xie, Z., Cai, Y.Z. and Cao, L.M., 2017. Construction, characterization and application of a genome-wide promoter library in Saccharomyces cerevisiae. Frontiers of Chemical Science and Engineering, 11(1), 107-116.


Zhou, H., Cheng, J.S., Wang, B.L., Fink, G.R. and Stephanopoulos, G., 2012. Xylose isomerase overexpression along with engineering of the pentose phosphate pathway and evolutionary engineering enable rapid xylose utilization and ethanol production by Saccharomyces cerevisiae. Metabolic Engineering, 14(6), pp.611-622.


DOI: http://dx.doi.org/10.26789/AEB.2018.01.007


  • There are currently no refbacks.

Copyright (c) 2018 Mei-Zhang, Wen-Jing Fan, Jing-Yu Wang and Li-Min Cao

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.