Abdul Khalil, H.P.S., Bhat, A.H. and Ireana Yusra, A.F., 2012. Green composites from sustainable cellulose nanofibrils: A review. Carbohydrate Polymers, 87(2), 963-979. https://doi.org/10.1016/j.carbpol.2011.08.078.
Abe, K., Iwamoto, S. and Yano, H., 2007. Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. Biomacro- molecules, 8(10), 3276-3278.
https://doi.org/10.1021/bm700624p.
de Campos, A., Correa, A.C., Cannella, D., de M Teixeira, E., Marconcini, J.M., Dufresne, A., Mattoso, L.H., Cassland, P. and Sanadi, A.R., 2013. Obtaining nanofibers from curaua´ and sugar- cane bagasse fibers using enzymatic hydrolysis followed by soni- cation. Cellulose, 20(3), 1491-1500. https://doi.org/10.1007/s10570-013-9909-3.
Dong, X.M., Revol, J.F. and Gray, D.G., 1998. Effect of micro- crystallite preparation conditions on the formation of colloid crys- tals of cellulose. Cellulose, 5(1), 19-32. https://doi.org/10.1023/A:1009260511939.
Dong, X.Y., Sun, T.P., Liu, Y.X., Li, C.H. and Li, Y.F., 2015.
Structure and properties of polymer-impregnated wood prepared by in-situ polymerization of reactive monomers. BioResources, 10(4), 7854-7864.
https://doi.org/10.15376/biores.10.4.7854-7864.
Dong, X.Y., Zhuo, X., Liu, C.H., Wei, J., Zhang, G., Pan, R.T and Li, Y.F., 2016. Improvement of decay resistance of wood by in-situ hybridization of reactive monomers and nano-SiO2 within wood. Applied Environmental Biotechnology, 1(2), 56-62.
Dong, X.Y., Zhuo, X., Wei, J., Zhang, G. and Li, Y.F., 2017. Wood-Based nanocomposite derived by in Situ formation of or- ganic Inorganic hybrid polymer within wood via a Sol-Gel method. ACS Applied Materials & Interfaces, 9(10), 9070-9078. https://doi.org/10.1021/acsami.7b01174.
Gardner, D.J., Oporto, G.S., Mills, R. and Samir, M.A.S.A., 2008. Adhesion and surface issues in cellulose and nanocellulose. Journal of Adhesion Science and Technology, 22(5-6), 545-567. https://doi.org/10.1163/156856108X295509.
Gawryla, M.D., van den Berg, O., Weder, C. and Schiraldi, D.A., 2009. Clay aerogel/cellulose whisker nanocomposites: a nanoscale wattle and daub. Journal of Materials Chemistry, 19(15), 2118-2124.
https://doi.org/10.1039/b823218k.
Hayashi, N., Kondo, T. and Ishihara, M., 2005. Enzymati- cally produced nano-ordered short elements containing cellulose Iβ crystalline 21/bm061215pdomains. Carbohydrate Polymers, 61(10), 191-197.
https://doi.org/10.1016/j.carbpol.2005.04.018.
Janardhnan, S. and Sain, M.M., 2007. Isolation of cellulose microfibrils-an enzymatic approach. BioResources, 1(2), 176-188. Janardhnan, S. and Sain, M.M., 2011. Targeted disruption of hy- droxyl chemistry and crystallinity in natural fibers for the isolation of cellulose nano-fibers via enzymatic treatment. BioResources,
(2), 1242-1250.
Korhonen, J.T., Hiekkataipale, P., Malm, J., Karppinen, M., Ikkala, O. and Ras, R.H., 2011. Inorganic hollow nanotube aero- gels by atomic layer deposition onto native nanocellulose tem- plates. ACS Nano, 5(3), 1967-1974. https://doi.org/10.1021/nn200108s.
Lin, N. and Dufresne, A., 2014. Nanocellulose in biomedicine: Current status and future prospect. European Polymer Journal, 59, 302-325.
https://doi.org/10.1016/j.eurpolymj.2014.07.025.
Martins, M.A., Teixeira, E.M., Correˆa, A.C., Ferreira, M. and Mattoso, L.H.C., 2011. Extraction and characterization of cellu- lose whiskers from commercial cotton fibers. Journal of Materials Science, 46(24), 7858.
https://doi.org/10.1007/s10853-011-5767-2.
Moon, R.J., Martini, A., Nairn, J., Simonsen, J. and Young- blood, J., 2011. Cellulose nanomaterials review: structure, proper- ties and nanocomposites. Chemical Society Reviews, 40(7), 3941- 3994.
https://doi.org/10.1039/c0cs00108b.
Nickerson, R.F. and Habrle, J.A., 1947. Cellulose intercrys- talline structure. Industrial & Engineering Chemistry, 39(11), 1507-1512.
Olsson, R.T., Samir, M.A.S.A, Salazar-Alvarez, G., Belova, L., Stro¨m, V., Berglund, L.A., Ikkala, O., Nogues, J. and Gedde, U.W., 2010. Making flexible magnetic aerogels and stiff magnetic nanopaper using cellulose nanofibrils as templates. Nature Nan- otechnology, 5(8), 584-588. https://doi.org/10.1038/nnano.2010.155.
Pa¨a¨kko¨, M., Ankerfors, M., Kosonen, H., Nyka¨nen, A., Aho- la, S., O¨sterberg, M., Ruokolainen, J., Laine, J., Larsson, P.T.,
Ikkala, O. and Lindstrm, T., 2007. Enzymatic hydrolysis com- bined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules, 8(6), 1934-1941.
https://doi.org/10.1021/bm061215p.
Pa¨a¨kko¨, M., Vapaavuori, J., Silvennoinen, R., Kosonen, H., Ankerfors, M., Lindstro¨m, T., Berglund, L.A. and Ikkala, O., 2008. Long and entangled native cellulose I nanofibers allow flexible aerogels and hierarchically porous templates for functionalities. Soft Matter, 4(12), 2492-2499.
https://doi.org/10.1039/B810371B.
Satyamurthy, P., Jain, P., Balasubramanya, R.H. and Vignesh- waran, N., 2011. Preparation and characterization of cellulose nanowhiskers from cotton fibres by controlled microbial hydrol-ysis. Carbohydrate Polymers, 83(1), 122-129. https://doi.org/10.1016/j.carbpol.2010.07.029.
Sinnott, M.L., 1998. The cellobiohydrolases of Trichoderma reesei: a review of indirect and direct evidence that their function is not just glycosidic bond hydrolysis. Biochemical Society Trans- actions, 26(2), 160-164.
https://doi.org/10.1042/bst0260160.
Siqueira, G., Tapin-Lingua, S., Bras, J., da Silva Perez, D. and Dufresne, A., 2010. Morphological investigation of nanoparticles obtained from combined mechanical shearing, and enzymatic and acid hydrolysis of sisal fibers. Cellulose, 17(6), 1147-1158. https://doi.org/10.1007/s10570-010-9449-z.
Tanpichai, S., Quero, F., Nogi, M., Yano, H., Young, R.J., Lindstro¨m, T., Sampson, W.W. and Eichhorn, S.J., 2012. Effective Young’s modulus of bacterial and microfibrillated cellulose fibrils in fibrous networks. Biomacromolecules, 13(5), 1340-1349. https://doi.org/10.1021/bm300042t.
Thonart, P., Paquot, M. and Mottet, A., 1980. Enzyme hydroly- sis of paper pulps. Influence of mechanical treatments [hard-, soft- wood]. Holzforschung, 33(6), 197-202. https://doi.org/10.1515/hfsg.1979.33.6.197.
Uetani, K. and Yano, H., 2010. Nanofibrillation of wood pulp using a high-speed blender. Biomacromolecules, 12(2), 348-353. https://doi.org/10.1021/bm101103p.
Valo, H., Arola, S., Laaksonen, P., Torkkeli, M., Peltonen, L., Linder, M.B., Serimaa, R., Kuga, S., Hirvonen, J. and Laaksonen, T., 2013. Drug release from nanoparticles embedded in four differ- ent nanofibrillar cellulose aerogels. European Journal of Pharma- ceutical Sciences, 50(1), 69-77. https://doi.org/10.1016/j.ejps.2013.02.023.
Wang, H.Y., Gong, Y.T. and Wang, Y., 2014. Cellulose-based hydrophobic carbon aerogels as versatile and superior adsorbents for sewage treatment. RSC Advances, 4(86), 45753-45759. https://doi.org/10.1039/C4RA08446B.
Wang, W., Mozuch, M.D., Sabo, R.C., Kersten, P., Zhu, J.Y. and Jin, Y.C., 2015. Production of cellulose nanofibrils from bleached eucalyptus fibers by hyperthermostable endoglucanase treatment and subsequent microfluidization. Cellulose, 22(1), 351-361. https://doi.org/10.1007/s10570-014-0465-2.
Zhao, H.P., Feng, X.Q. and Gao, H.J., 2007. Ultrasonic tech- nique for extracting nanofibers from nature materials. Applied Physics Letters, 90(7), 17-18.
https://doi.org/10.1063/1.2450666.
Zhuo, X., Liu, C., Pan, R.T., Dong, X.Y. and Li, Y.F., 2017.
Nanocellulose mechanically isolated from amorpha fruticosa linn. ACS Sustainable Chemistry & Engineering, 5(5), 4414-4420. https://doi.org/10.1021/acssuschemeng.7b00478.
Zimmermann, T., Bordeanu, N. and Strub, E., 2010. Properties of nanofibrillated cellulose from different raw materials and its re- inforcement potential. Carbohydrate Polymers, 79(4), 1086-1093. https://doi.org/10.1016/j.carbpol.2009.10.045.