Potencial correlated environmental factors leading to the niche segregation of ammonia-oxidizing archaea and ammonia-oxidizing bacteria: A review

VIEWS - 1053 (Abstract) 242 (PDF)
Shuai Liu, Jia-Jie Hu, Jia-Xian Shen, Shu Chen, Guang-Ming Tian, Ping Zheng, Li-Ping Lou, Fang Ma, Bao-Lan Hu


Ammonia oxidation is an important step of the nitrogen cycle and was considered to be conducted only by ammonia-oxidizing bacteria (AOB) for a long time. The discovery of ammonia-oxidizing archaea (AOA) caused consideration of the relative contributions of these two functional groups in different niches and factors resulting in their niche segregation. Previous studies showed that some environmental factors may correlate to the abundance and distribution of AOA and AOB, including ammonia/ammonium concentration, pH, organic matters, oxygen concentration, temperature, salinity, sulfide concentration, phosphate concentration, soil moisture, and so on. Despite extensive studies conducted on ecology of AOA and AOB to find key environmental factors dominating niche segregation between AOA and AOB, few studies were conducted to explore the interrelationship among environmental factors. In this review, five main environmental factors which may be related to each other were selectively reviewed independently, including ammonia concentration, pH, temperature, oxygen concentration and organic matters. Furthermore, potential interrelationship among environmental factors was proposed.


ammonia concentration; pH; temperature; oxygen concentration; organic matters

Full Text:



Abell, G.C., Banks, J., Ross, D.J., Keane, J.P., Robert, S.S., Re- vill, A.T. and Volkman, J.K., 2011. Effects of estuarine sediment hypoxia on nitrogen fluxes and ammonia oxidizer gene transcrip- tion. FEMS Microbiology Ecology, 75(1), 111-122. https://doi.org/10.1111/j.1574-6941.2010.00988.x.

Agogue´, H., Brink, M., Dinasquet, J. and Herndl, G.J., 2008. Major gradients in putatively nitrifying and non-nitrifying Archaea in the deep North Atlantic. Nature, 456, 788-791. https://doi.org/10.1038/nature07535.

Bayer, B., Vojvoda, J., Offre, P., Alves, R.J., Elisabeth, N.H., Garcia, J.A., Volland, J.M., Srivastava, A., Schleper, C. and H- erndl, G.J., 2016. Physiological and genomic characterization of two novel marine thaumarchaeal strains indicates niche differenti- ation. The ISME Journal, 10(5), 1051. https://doi.org/10.1038/ismej.2015.200.

Berg, I.A., Kockelkorn, D., Ramos-Vera, W.H., Say, R.F., Zarzycki, J., Hu¨gler, M., Alber, B.E. and Fuchs, G., 2010. Au- totrophic carbon fixation in archaea. Nature Reviews Microbiolo- gy, 8(6), 447-460.


Biller, S.J., Mosier, A.C., Wells, G.F. and Francis, C.A., 2012. Global biodiversity of aquatic ammonia-oxidizing archaea is parti- tioned by habitat. Frontiers in Microbiology, 3, 252. https://doi.org/10.3389/fmicb.2012.00252.

Blainey, P.C., Mosier, A.C., Potanina, A., Francis, C.A. and Quake, S.R., 2011. Genome of a low-salinity ammonia-oxidizing archaeon determined by single-cell and metagenomic analysis. P- LoS One, 6(2), e16626.


Burton, S.A.Q. and Prosser, J.I., 2001. Autotrophic ammonia oxidation at low pH through urea hydrolysis. Applied and Envi- ronmental Microbiology, 67(7), 2952-2957. https://doi.org/10.1128/AEM.67.7.2952-2957.2001.

Daims, H., Lebedeva, E.V., Pjevac, P., Han, P., Herbold, C., Al- bertsen, M., Jehmlich, N., Palatinszky, M., Vierheilig, J., Bulaev,

A.and Kirkegaard, R.H., 2015. Complete nitrification by Nitrospi- ra bacteria. Nature, 528(7583), 504. https://doi.org/10.1038/nature16461.

Dalsgaard, T., Stewart, F., De Brabandere, L., Thamdrup, B., Revsbech, N.P., Canfield, D.E., Bristow, L.A., Ulloa, O., Young, C., Delong, E. and Tiano, L., 2013. The effects of oxygen on pro- cess rates and gene expression of anammox and denitrification in the Eastern South Pacific oxygen minimum zone. In: ASLO 2013 Aquatic Sciences Meeting, New Orleans, Louisana, USA, 17-22 February 2013.

De La Torre, J.R., Walker, C.B., Ingalls, A.E., Ko¨nneke, M. and Stahl, D.A., 2008. Cultivation of a thermophilic ammonia oxidiz- ing archaeon synthesizing crenarchaeol. Environmental Microbi- ology, 10(3), 810-818.


Elling, F. J., Ko¨nneke, M., Muβmann, M., Greve, A. and Hin- richs, K.U., 2015. Influence of temperature, pH, and salinity on membrane lipid composition and TEX 86 of marine planktonic thaumarchaeal isolates. Geochimica et Cosmochimica Acta, 171, 238-255.


Gan, X.H., Zhang, F.Q., Gu, J.D., Guo, Y.D., Li, Z.Q., Zhang,

W.Q., Xu, X.Y., Zhou, Y., Wen, X.Y., Xie, G.G. and Wang, Y.F.,

Differential distribution patterns of ammonia-oxidizing ar- chaea and bacteria in acidic soils of Nanling National Nature Re- serve forests in subtropical China. Antonie van Leeuwenhoek, 109(2), 237-251.


Gubry-Rangin, C., Hai, B., Quince, C., Engel, M., Thomson, B.C., James, P., Schloter, M., Griffiths, R.I., Prosser, J.I. and Nicol, G.W., 2011. Niche specialization of terrestrial archaeal ammoni- a oxidizers. Proceedings of the National Academy of Sciences, 108(52), 21206-21211.


Gubry-Rangin, C., Novotnik, B., Mandic˘-Mulec, I., Nicol, G.W. and Prosser, J.I., 2017. Temperature responses of soil ammonia- oxidising archaea depend on pH. Soil Biology and Biochemistry, 106, 61-68.


Hallam, S.J., Mincer, T.J., Schleper, C., Preston, C.M., Roberts, K., and Richardson, P.M., DeLong, E.F., 2006. Pathways of carbon assimilation and ammonia oxidation suggested by environmental genomic analyses of marine crenarchaeota. PLoS Biology, 4, e95. https://doi.org/10.1371/journal.pbio.0040095.

Hatzenpichler, R., 2012. Diversity, physiology, and niche dif- ferentiation of ammonia-oxidizing archaea. Applied and Environ- mental Microbiology, 78(21), 7501-7510. https://doi.org/10.1128/AEM.01960-12.

Hatzenpichler, R., Lebedeva, E.V., Spieck, E., Stoecker, K., Richter, A., Daims, H. and Wagner, M., 2008. A moderately ther- mophilic ammonia-oxidizing crenarchaeote from a hot spring. Pro- ceedings of the National Academy of Sciences, 105(6), 2134-2139. https://doi.org/10.1073/pnas.0708857105.

He, J.Z., Shen, J.P., Zhang, L.M., Zhu, Y.G., Zheng, Y.M., Xu,

M.G. and Di, H., 2007. Quantitative analyses of the abundance and composition of ammonia-oxidizing bacteria and ammonia- oxidizing archaea of a Chinese upland red soil under long-term fertilization practices. Environmental Microbiology, 9(9), 2364- 2374.


Herrmann, M., Scheibe, A., Avrahami, S. and Ku¨sel, K., 2011. Ammonium availability affects the ratio of ammonia-oxidizing bacteria to ammonia-oxidizing archaea in simulated creek ecosys- tems. Applied and Environmental Microbiology, 77(5), 1896- 1899.


Hu, B.L., Liu, S., Wang, W., Shen, L.D., Lou, L.P., Liu, W.P.,

Tian, G.M., Xu, X.Y. and Zheng P., 2014. pH-dominated niche segregation of ammonia-oxidising microorganisms in Chinese a- gricultural soils. FEMS Microbiology Ecology, 90(1), 290-299. https://doi.org/10.1111/1574-6941.12391.

Jung, M.Y., Kim, J.G., Sinninghe Damste´, J.S., Rijpstra, W.I.C., Madsen, E.L., Kim, S.J., Hong, H., Si, O.J., Kerou, M., Schleper,

C. and Rhee, S.K., 2016. A hydrophobic ammoniaoxidizing ar- chaeon of the Nitrosocosmicus clade isolated from coal tarcontam- inated sediment. Environmental Microbiology Reports, 8(6), 983- 992.


Jung, M.Y., Park, S.J., Kim, S.J., Kim, J.G., Damste´, J.S.S., Jeon, C.O. and Rhee, S.K., 2014. A mesophilic, autotrophic, ammonia-oxidizing archaeon of thaumarchaeal group I. 1a culti-vated from a deep oligotrophic soil horizon. Applied and Environ- mental Microbiology, 80(12), 3645-3655. https://doi.org/10.1128/AEM.03730-13.

Jung, M.Y., Park, S.J., Min, D., Kim, J.S., Rijpstra, W.I.C.,

Damste´, J.S.S., Kim, G.J., Madsen, E.L. and Rhee, S.K., 2011. Enrichment and characterization of an autotrophic ammonia- oxidizing archaeon of mesophilic crenarchaeal group I. 1a from an agricultural soil. Applied and Environmental Microbiology, 77(24), 8635-8647.


Ke, X., Lu, W. and Conrad, R., 2015. High oxygen concentra- tion increases the abundance and activity of bacterial rather than archaeal nitrifiers in rice field soil. Microbial Ecology, 70(4), 961- 970.


Kim, J.G., Jung, M.Y., Park, S.J., Rijpstra, W.I.C., Sinninghe

Damste´, J.S., Madsen, E.L., Min, D., Kim, J.S., Kim, G.J. and Rhee, S.K., 2012. Cultivation of a highly enriched ammoniaoxi- dizing archaeon of thaumarchaeotal group I. 1b from an agricultur- al soil. Environmental Microbiology, 14(6), 1528-1543. https://doi.org/10.1111/j.1462-2920.2012.02740.x.

Kim, J.G., Park, S.J., Damste´, J.S.S., Schouten, S., Rijpstra,

W.I.C., Jung, M.Y., Kim, S.J., Gwak, J.H., Hong, H., Si, O.J. and

Lee, S., 2016. Hydrogen peroxide detoxification is a key mech- anism for growth of ammonia-oxidizing archaea. Proceedings of the National Academy of Sciences, 113(28), 7888-7893. https://doi.org/10.1073/pnas.1605501113.

Ko¨nneke, M., Bernhard, A.E., De La Torre, J.R. and Walker, C.B., 2005. Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature, 437(7058), 543-546.

Koops, H.P., Purkhold, U., Pommerening-Ro¨ser, A., Timmer- mann, G. and Wagner, M.(2003) The lithoautotrophic ammonia- oxidizing bacteria. pp. 778-811. In: The Prokaryotes: An E- volving Electronic Resource for the Microbiological Community. Springer, New York.

Lagostina, L., Goldhammer, T., Rφy, H., Evans, T.W., Lever, M.A., Jφrgensen, B.B., Petersen, D.G., Schramm, A. and Schreiber, L., 2015. Ammonia-oxidizing Bacteria of the Ni- trosospira cluster 1 dominate over ammonia-oxidizing Archaea in oligotrophic surface sediments near the South Atlantic Gyre. En- vironmental Microbiology Reports, 7(3), 404-413. https://doi.org/10.1111/1758-2229.12264.

Lehtovirta-Morley, L.E., Ge, C., Ross, J., Yao, H., Nicol, G.W. and Prosser, J.I., 2014. Characterisation of terrestrial acidophilic archaeal ammonia oxidisers and their inhibition and stimulation by organic compounds. FEMS Microbiology Ecology, 89(3), 542- 552.


Lehtovirta-Morley, L.E., Ross, J., Hink, L., Weber, E.B., Gubry- Rangin, C., Thion, C., Prosser, J.I. and Nicol, G.W., 2016a. Isola- tion of ‘Candidatus Nitrosocosmicus franklandus’, a novel ureolyt- ic soil archaeal ammonia oxidiser with tolerance to high ammonia concentration. FEMS Microbiology Ecology, 92(5), fiw057. https://doi.org/10.1093/femsec/fiw057.

Lehtovirta-Morley, L.E., Sayavedra-Soto, L.A., Gallois, N., Schouten, S., Stein, L.Y., Prosser, J.I. and Nicol, G.W., 2016b. Identifying Potential Mechanisms Enabling Acidophily in the Ammonia-Oxidizing Archaeon “Candidatus Nitrosotalea devanaterra”. Applied and Environmental Microbiology, 82(9), 2608-2619.


Lehtovirta-Morley, L.E., Stoecker, K., Vilcinskas, A., Prosser,

J.I. and Nicol, G.W., 2011. Cultivation of an obligate acidophilic ammonia oxidizer from a nitrifying acid soil. Proceedings of the National Academy of Sciences, 108(38), 15892-15897. https://doi.org/10.1073/pnas.1107196108.

Leininger, S., Urich, T., Schloter, M., Schwark, L., Qi, J., Nicol, G.W., Prosser, J.I., Schuster, S.C. and Schleper, C., 2006. Archaea predominate among ammonia-oxidizing prokaryotes in soils. Na- ture, 442(7104), 806-809.


Liu, S., Hu, B., He, Z., Zhang, B., Tian, G., Zheng, P. and Fang, F., 2015. Ammonia-oxidizing archaea have better adapt- ability in oxygenated/hypoxic alternant conditions compared to ammonia-oxidizing bacteria. Applied Microbiology and Biotech- nology, 99(20), 8587-8596.


Lu, L. and Jia, Z., 2013. Urease gene-containing Archaea dom- inate autotrophic ammonia oxidation in two acid soils. Environ- mental Microbiology, 15(6), 1795-1809. https://doi.org/10.1111/1462-2920.12071.

Lu, S., Liu, X., Ma, Z., Liu, Q., Wu, Z., Zeng, X., Shi, X. and Gu, Z., 2016. Vertical segregation and phylogenetic characteriza- tion of ammonia-oxidizing bacteria and archaea in the sediment of a freshwater aquaculture pond. Frontiers in Microbiology, 6, 1539. Martens-Habbena, W., Berube, P.M., Urakawa, H., De La Torre,

J.R. and Stahl, D.A., 2009. Ammonia oxidation kinetics deter- mine niche separation of nitrifying Archaea and Bacteria. Nature, 461(7266), 976-979.


Martin-Cuadrado, A.B., Rodriguez-Valera, F., Moreira, D., Al- ba, J.C., Ivars-Mart´ınez, E., Henn, M.R., Talla, E. and Lo´pez- Garc´ıa, P., 2008. Hindsight in the relative abundance, metabol- ic potential and genome dynamics of uncultivated marine archaea from comparative metagenomic analyses of bathypelagic plankton of different oceanic regions. The ISME Journal, 2(8), 865-886. https://doi.org/10.1038/ismej.2008.40.

Molina, V., Belmar, L. and Ulloa, O., 2010. High diversity of ammonia-oxidizing archaea in permanent and seasonal oxygen- deficient waters of the eastern South P acific. Environmental Mi- crobiology, 12(9), 2450-2465.


Monteiro, M., Se´neca, J. and Magalha˜es, C., 2014. The history of aerobic ammonia oxidizers: from the first discoveries to today. Journal of Microbiology, 52(7), 537-547. https://doi.org/10.1007/s12275-014-4114-0.

Mosier, A.C., Allen, E.E., Kim, M., Ferriera, S. and Francis, C.A., 2012. Genome sequence of “Candidatus Nitrosopumilus salaria” BD31, an ammonia-oxidizing archaeon from the San Fran- cisco Bay Estuary. Journal of Bacteriology, 194(8), 2121-2122. https://doi.org/10.1128/JB.00013-12.

Nicol, G.W., Leininger, S., Schleper, C. and Prosser, J.I., 2008. The influence of soil pH on the diversity, abundance and transcrip- tional activity of ammonia oxidizing archaea and bacteria. Envi- ronmental Microbiology, 10(11), 2966-2978. https://doi.org/10.1111/j.1462-2920.2008.01701.x.

Norman, J.S. and Barrett, J.E., 2014. Substrate and nutrien- t limitation of ammonia-oxidizing bacteria and archaea in temper- ate forest soil. Soil Biology and Biochemistry, 69(1), 141-146. https://doi.org/10.1016/j.soilbio.2013.11.003.

Norman, J.S. and Barrett, J.E., 2016. Substrate availability drives spatial patterns in richness of ammonia-oxidizing bacteria and archaea in temperate forest soils. Soil Biology and Biochem- istry, 94, 169-172.


Ouverney, C.C. and Fuhrman, J.A., 2000. Marine planktonic archaea take up amino acids. Applied and Environmental Microbi- ology, 66(11), 4829-4833.


Ouyang, Y., Norton, J.M., Stark, J.M., Reeve, J.R. and Habtese- lassie, M.Y., 2016. Ammonia-oxidizing bacteria are more respon- sive than archaea to nitrogen source in an agricultural soil. Soil Biology and Biochemistry, 96, 4-15. https://doi.org/10.1016/j.soilbio.2016.01.012.

Oton, E.V., Quince, C., Nicol, G.W., Prosser, J.I. and Gubry- Rangin, C., 2016. Phylogenetic congruence and ecological coher- ence in terrestrial Thaumarchaeota. The ISME Journal, 10(1), 85- 96.


Park, B.J., Park, S.J., Yoon, D.N., Schouten, S., Damste´,

J.S.S. and Rhee, S.K., 2010. Cultivation of autotrophic ammonia- oxidizing archaea from marine sediments in coculture with sulfur- oxidizing bacteria. Applied and Environmental Microbiology, 76(22), 7575-7587.


Park, H.D. and Noguera, D.R., 2007. Characterization of two ammonia-oxidizing bacteria isolated from reactors operated with low dissolved oxygen concentrations. Journal of Applied Microbi- ology, 102(5), 1401-1417.


Prosser, J.I. and Nicol, G.W., 2012. Archaeal and bacterial ammonia-oxidisers in soil: the quest for niche specialisation and differentiation. Trends in Microbiology, 20(11), 523-531. https://doi.org/10.1016/j.tim.2012.08.001.

Qin, W., Amin, S.A., Martens-Habbena, W., Walker, C.B.,

Urakawa, H., Devol, A.H., Ingalls, A.E., Moffett, J.W., Arm- brust, E.V. and Stahl, D.A., 2014. Marine ammonia-oxidizing ar- chaeal isolates display obligate mixotrophy and wide ecotypic vari- ation. Proceedings of the National Academy of Sciences, 111(34), 12504-12509.


Reigstad, L.J., Richter, A., Daims, H., Urich, T., Schwark, L. and Schleper, C., 2008. Nitrification in terrestrial hot springs of Iceland and Kamchatka. FEMS Microbiology Ecology, 64(2), 167- 174.


Santoro, A.E., Francis, C.A., De Sieyes, N.R. and Boehm, A.B., 2008. Shifts in the relative abundance of ammonia-oxidizing bacte- ria and archaea across physicochemical gradients in a subterranean estuary. Environmental Microbiology, 10(4), 1068-1079. https://doi.org/10.1111/j.1462-2920.2007.01547.x.

Sauder, L.A., Albertsen, M., Engel, K., Schwarz, J., Nielsen, P.H., Wagner, M. and Neufeld, J.D., 2017. Cultivation and charac- terization of Candidatus Nitrosocosmicus exaquare, an ammonia- oxidizing archaeon from a municipal wastewater treatment system. The ISME Journal, 11(5), 1142-1157.


Sauder, L.A., Peterse, F., Schouten, S. and Neufeld, J.D., 2012. Low-ammonia niche of ammonia-oxidizing archaea in rotating bi- ological contactors of a municipal wastewater treatment plant. En- vironmental Microbiology, 14(9), 2589-2600. https://doi.org/10.1111/j.1462-2920.2012.02786.x.

Song, H., Che, Z., Cao, W., Huang, T., Wang, J. and Dong, Z., 2016. Changing roles of ammonia-oxidizing bacteria and archaea in a continuously acidifying soil caused by over-fertilization with nitrogen. Environmental Science and Pollution Research, 23(12), 11964-11974.


Stahl, D.A. and De La Torre, J.R., 2012. Physiology and diversi- ty of ammonia-oxidizing archaea. Annual review of microbiology, 66, 83-101.

https://doi.org/10.1146/annurev-micro-092611-150128. Stempfhuber, B., Engel, M., Fischer, D., Neskovic-Prit, G., Wu-

bet, T., Schio¨ning, I., Gubry-Rangin, C., Kublik, S., Schloter-Hai,

B., Rattei, T. and Welzl, G., 2015. pH as a driver for ammonia- oxidizing archaea in forest soils. Microbial Ecology, 69(4), 879- 883.

Stopnisˇek, N., Gubry-Rangin, C., Ho¨fferle, Sˇ., Nicol, G.W., Mandicˇ-Mulec, I. and Prosser, J.I., 2010. Thaumarchaeal ammo- nia oxidation in an acidic forest peat soil is not influenced by am- monium amendment. Applied and Environmental Microbiology, 76(22), 7626-7634.


Suwa, Y., Imamura, Y., Suzuki, T., Tashiro, T. and Urushigawa, Y., 1994. Ammonia-oxidizing bacteria with different sensitivities to (NH4)2SO4 in activated sludges. Water Research, 28(7), 1523- 1532.


Taylor, A.E., Giguere, A.T., Zoebelein, C.M., Myrold, D.D. and Bottomley, P.J., 2016. Modeling of soil nitrification re- sponses to temperature reveals thermodynamic differences be- tween ammonia-oxidizing activity of archaea and bacteria. The ISME Journal, 11(4), 896-908.


Tourna, M., Stieglmeier, M., Spang, A., Ko¨nneke, M., Schintlmeister, A., Urich, T., Engel, M., Schloter, M., Wagner, M., Richter, A. and Schleper, C., 2011. Nitrososphaera viennensis, an ammonia oxidizing archaeon from soil. Proceedings of the Nation- al Academy of Sciences, 108(20), 8420-8425.

van Kessel, M.A., Speth, D.R., Albertsen, M., Nielsen, P.H., den Camp, H.J.O., Kartal, B., Jetten, M.S. and Lu¨cker, S., 2015. Com- plete nitrification by a single microorganism. Nature, 528(7583), 555.


Verhamme, D.T., Prosser, J.I. and Nicol, G.W., 2011. Am- monia concentration determines differential growth of ammonia- oxidising archaea and bacteria in soil microcosms. The ISME Jour- nal, 5(6), 1067-1071.


Vissers E. W., Anselmetti F. S., Bodelier P. L. E., Muyzer, G., Schleper, C., Tourna, M. and Laanbroek, H. J., 2013, Temporal and spatial coexistence of archaeal and bacterial amoA genes and gene transcripts in Lake Lucerne. Archaea, 2013.

von Uexku¨ll H. R. and Mutert E.,1995, Plant-Soil Interactions at Low pH, Principles and Management, pp. 5e19, In: Date RA, Grundon NJ, Raymet GE, Probert ME (eds), Plant-Soil Interaction- s at Low pH, Principles and Management. Kluwer, New York.

Walker, C.B., De La Torre, J.R., Klotz, M.G., Urakawa, H.,

Pinel, N., Arp, D.J., Brochier-Armanet, C., Chain, P.S.G., Chan, P.P., Gollabgir, A. and Hemp, J., 2010. Nitrosopumilus maritimus genome reveals unique mechanisms for nitrification and autotro- phy in globally distributed marine crenarchaea. Proceedings of the National Academy of Sciences, 107(19), 8818-8823. https://doi.org/10.1073/pnas.0913533107.

Wuchter, C., Abbas, B., Coolen, M.J.L., Herfort, L., van Blei- jswijk, J., Timmers, P., Strous, M., Teira, E., Herndl, G.J., Mid- delburg, J.J. and Schouten, S., 2006. Archaeal nitrification in the ocean. Proceedings of the National Academy of Sciences, 103(33), 12317-12322.


Yang, Y., Zhang, J., Zhao, Q., Zhou, Q., Li, N., Wang, Y., Xie, S. and Liu, Y., 2016. Sediment ammonia-oxidizing microorganisms in two plateau freshwater lakes at different trophic states. Micro- bial Ecology, 71(2), 257-265.


Yao, H., Gao, Y., Nicol, G.W., Campbell, C.D., Prosser, J.I., Zhang, L., Han, W. and Singh, B.K., 2011. Links between am- monia oxidizer community structure, abundance, and nitrification potential in acidic soils. Applied and Environmental Microbiology, 77(13), 4618-4625.


Zhang, X., Tang, Y., Shi, Y., He, N., Wen, X., Yu, Q., Zheng, C., Sun, X. and Qiu, W., 2016. Responses of soil hydrolytic enzymes, ammonia-oxidizing bacteria and archaea to nitrogen applications in a temperate grassland in Inner Mongolia. Scientific Reports, 6(6), 32791.


Zhou, Z.F., Wang, M.X., Liu, W.L., Li, Z.L., Luo, F. and Xie, D.T., 2015. A comparative study of ammonia-oxidizing archaea and bacteria in acidic and alka line purple soils. Annals of Micro- biology, 66(2), 615-623.


DOI: http://dx.doi.org/10.26789/AEB.2017.01.002


  • There are currently no refbacks.

Copyright (c) 2017 Shuai Liu, Jiajie Hu, Jiaxian Shen, Shu Chen, Guangming Tian, Ping Zheng, Liping Lou, Fang Ma, Baolan Hu

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.