Potencial correlated environmental factors leading to the niche segregation of ammonia-oxidizing archaea and ammonia-oxidizing bacteria: A review
Abstract
Keywords
Full Text:
References
Abell, G.C., Banks, J., Ross, D.J., Keane, J.P., Robert, S.S., Revill, A.T. and Volkman, J.K., 2011. Effects of estuarine sediment hypoxia on nitrogen fluxes and ammonia oxidizer gene transcription. FEMS Microbiology Ecology, 75(1), 111-122. https://doi.org/10.1111/j.1574-6941.2010.00988.x
Agogue, H., Brink, M., Dinasquet, J. and Herndl, G.J., 2008. Major gradients in putatively nitrifying and non-nitrifying Archaea in the deep North Atlantic. Nature, 456, 788-791. https://doi.org/10.1038/nature07535
Bayer, B., Vojvoda, J., Offre, P., Alves, R.J., Elisabeth, N.H., Garcia, J.A., Volland, J.M., Srivastava, A., Schleper, C. and Herndl, G.J., 2016. Physiological and genomic characterization of two novel marine thaumarchaeal strains indicates niche differentiation. The ISME Journal, 10(5), 1051. https://doi.org/10.1038/ismej.2015.200
Berg, I.A., Kockelkorn, D., Ramos-Vera, W.H., Say, R.F., Zarzycki, J., Hugler, M., Alber, B.E. and Fuchs, G., 2010. Autotrophic carbon fixation in archaea. Nature Reviews Microbiology, 8(6), 447-460. https://doi.org/10.1038/nrmicro2365
Biller, S.J., Mosier, A.C., Wells, G.F. and Francis, C.A., 2012. Global biodiversity of aquatic ammonia-oxidizing archaea is partitioned by habitat. Frontiers in Microbiology, 3, 252. https://doi.org/10.3389/fmicb.2012.00252
Blainey, P.C., Mosier, A.C., Potanina, A., Francis, C.A. and Quake, S.R., 2011. Genome of a low-salinity ammonia-oxidizing archaeon determined by single-cell and metagenomic analysis. PLoS One, 6(2), e16626. https://doi.org/10.1371/journal.pone.0016626
Burton, S.A.Q. and Prosser, J.I., 2001. Autotrophic ammonia oxidation at low pH through urea hydrolysis. Applied and Environmental Microbiology, 67(7), 2952-2957. https://doi.org/10.1128/AEM.67.7.2952-2957.2001
Daims, H., Lebedeva, E.V., Pjevac, P., Han, P., Herbold, C., Al- bertsen, M., Jehmlich, N., Palatinszky, M., Vierheilig, J., Bulaev,
A.and Kirkegaard, R.H., 2015. Complete nitrification by Nitrospi- ra bacteria. Nature, 528(7583), 504. https://doi.org/10.1038/nature16461
Dalsgaard, T., Stewart, F., De Brabandere, L., Thamdrup, B., Revsbech, N.P., Canfield, D.E., Bristow, L.A., Ulloa, O., Young, C., Delong, E. and Tiano, L., 2013. The effects of oxygen on process rates and gene expression of anammox and denitrification in the Eastern South Pacific oxygen minimum zone. In: ASLO 2013 Aquatic Sciences Meeting, New Orleans, Louisana, USA, 17-22 February 2013.
De La Torre, J.R., Walker, C.B., Ingalls, A.E., Konneke, M. and Stahl, D.A., 2008. Cultivation of a thermophilic ammonia oxidizing archaeon synthesizing crenarchaeol. Environmental Microbi- ology, 10(3), 810-818. https://doi.org/10.1111/j.1462-2920.2007.01506.x
Elling, F. J., Konneke, M., Muβmann, M., Greve, A. and Hinrichs, K.U., 2015. Influence of temperature, pH, and salinity on membrane lipid composition and TEX 86 of marine planktonic thaumarchaeal isolates. Geochimica et Cosmochimica Acta, 171, 238-255. https://doi.org/10.1016/j.gca.2015.09.004
Gan, X.H., Zhang, F.Q., Gu, J.D., Guo, Y.D., Li, Z.Q., Zhang, W.Q., Xu, X.Y., Zhou, Y., Wen, X.Y., Xie, G.G. and Wang, Y.F., 2016. Differential distribution patterns of ammonia-oxidizing archaea and bacteria in acidic soils of Nanling National Nature Re- serve forests in subtropical China. Antonie van Leeuwenhoek, 109(2), 237-251. https://doi.org/10.1007/s10482-015-0627-8
Gubry-Rangin, C., Hai, B., Quince, C., Engel, M., Thomson, B.C., James, P., Schloter, M., Griffiths, R.I., Prosser, J.I. and Nicol, G.W., 2011. Niche specialization of terrestrial archaeal ammonia oxidizers. Proceedings of the National Academy of Sciences, 108(52), 21206-21211. https://doi.org/10.1073/pnas.1109000108
Gubry-Rangin, C., Novotnik, B., Mandic˘-Mulec, I., Nicol, G.W. and Prosser, J.I., 2017. Temperature responses of soil ammonia-oxidising archaea depend on pH. Soil Biology and Biochemistry, 106, 61-68. https://doi.org/10.1016/j.soilbio.2016.12.007
Hallam, S.J., Mincer, T.J., Schleper, C., Preston, C.M., Roberts, K., and Richardson, P.M., DeLong, E.F., 2006. Pathways of carbon assimilation and ammonia oxidation suggested by environmental genomic analyses of marine crenarchaeota. PLoS Biology, 4, e95. https://doi.org/10.1371/journal.pbio.0040095
Hatzenpichler, R., 2012. Diversity, physiology, and niche differentiation of ammonia-oxidizing archaea. Applied and Environmental Microbiology, 78(21), 7501-7510. https://doi.org/10.1128/AEM.01960-12
Hatzenpichler, R., Lebedeva, E.V., Spieck, E., Stoecker, K., Richter, A., Daims, H. and Wagner, M., 2008. A moderately thermophilic ammonia-oxidizing crenarchaeote from a hot spring. Pro- ceedings of the National Academy of Sciences, 105(6), 2134-2139. https://doi.org/10.1073/pnas.0708857105
He, J.Z., Shen, J.P., Zhang, L.M., Zhu, Y.G., Zheng, Y.M., Xu, M.G. and Di, H., 2007. Quantitative analyses of the abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea of a Chinese upland red soil under long-term fertilization practices. Environmental Microbiology, 9(9), 2364- 2374.
https://doi.org/10.1111/j.1462-2920.2007.01358.x
Herrmann, M., Scheibe, A., Avrahami, S. and Ku¨sel, K., 2011. Ammonium availability affects the ratio of ammonia-oxidizing bacteria to ammonia-oxidizing archaea in simulated creek ecosys- tems. Applied and Environmental Microbiology, 77(5), 1896- 1899.
https://doi.org/10.1128/AEM.02879-10
Hu, B.L., Liu, S., Wang, W., Shen, L.D., Lou, L.P., Liu, W.P., Tian, G.M., Xu, X.Y. and Zheng P., 2014. pH-dominated niche segregation of ammonia-oxidising microorganisms in Chinese a- gricultural soils. FEMS Microbiology Ecology, 90(1), 290-299. https://doi.org/10.1111/1574-6941.12391
Jung, M.Y., Kim, J.G., Sinninghe Damste, J.S., Rijpstra, W.I.C., Madsen, E.L., Kim, S.J., Hong, H., Si, O.J., Kerou, M., Schleper,
C. and Rhee, S.K., 2016. A hydrophobic ammoniaoxidizing archaeon of the Nitrosocosmicus clade isolated from coal tarcontaminated sediment. Environmental Microbiology Reports, 8(6), 983-992. https://doi.org/10.1111/1758-2229.12477
Jung, M.Y., Park, S.J., Kim, S.J., Kim, J.G., Damste´, J.S.S., Jeon, C.O. and Rhee, S.K., 2014. A mesophilic, autotrophic, ammonia-oxidizing archaeon of thaumarchaeal group I. 1a culti-vated from a deep oligotrophic soil horizon. Applied and Environmental Microbiology, 80(12), 3645-3655. https://doi.org/10.1128/AEM.03730-13
Jung, M.Y., Park, S.J., Min, D., Kim, J.S., Rijpstra, W.I.C., Damste, J.S.S., Kim, G.J., Madsen, E.L. and Rhee, S.K., 2011. Enrichment and characterization of an autotrophic ammonia-oxidizing archaeon of mesophilic crenarchaeal group I. 1a from an agricultural soil. Applied and Environmental Microbiology, 77(24), 8635-8647. https://doi.org/10.1128/AEM.05787-11
Ke, X., Lu, W. and Conrad, R., 2015. High oxygen concentra- tion increases the abundance and activity of bacterial rather than archaeal nitrifiers in rice field soil. Microbial Ecology, 70(4), 961-970. https://doi.org/10.1007/s00248-015-0633-4
Kim, J.G., Jung, M.Y., Park, S.J., Rijpstra, W.I.C., Sinninghe Damste´, J.S., Madsen, E.L., Min, D., Kim, J.S., Kim, G.J. and Rhee, S.K., 2012. Cultivation of a highly enriched ammoniaoxi- dizing archaeon of thaumarchaeotal group I. 1b from an agricultural soil. Environmental Microbiology, 14(6), 1528-1543. https://doi.org/10.1111/j.1462-2920.2012.02740.x
Kim, J.G., Park, S.J., Damste´, J.S.S., Schouten, S., Rijpstra, W.I.C., Jung, M.Y., Kim, S.J., Gwak, J.H., Hong, H., Si, O.J. and
Lee, S., 2016. Hydrogen peroxide detoxification is a key mechanism for growth of ammonia-oxidizing archaea. Proceedings of the National Academy of Sciences, 113(28), 7888-7893. https://doi.org/10.1073/pnas.1605501113
Ko¨nneke, M., Bernhard, A.E., De La Torre, J.R. and Walker, C.B., 2005. Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature, 437(7058), 543-546.
Koops, H.P., Purkhold, U., Pommerening-Ro¨ser, A., Timmermann, G. and Wagner, M.(2003) The lithoautotrophic ammonia-oxidizing bacteria. pp. 778-811. In: The Prokaryotes: An E- volving Electronic Resource for the Microbiological Community. Springer, New York.
Lagostina, L., Goldhammer, T., Rφy, H., Evans, T.W., Lever, M.A., Jφrgensen, B.B., Petersen, D.G., Schramm, A. and Schreiber, L., 2015. Ammonia-oxidizing Bacteria of the Nitrosospira cluster 1 dominate over ammonia-oxidizing Archaea in oligotrophic surface sediments near the South Atlantic Gyre. Environmental Microbiology Reports, 7(3), 404-413. https://doi.org/10.1111/1758-2229.12264
Lehtovirta-Morley, L.E., Ge, C., Ross, J., Yao, H., Nicol, G.W. and Prosser, J.I., 2014. Characterisation of terrestrial acidophilic archaeal ammonia oxidisers and their inhibition and stimulation by organic compounds. FEMS Microbiology Ecology, 89(3), 542-552.https://doi.org/10.1111/1574-6941.12353
Lehtovirta-Morley, L.E., Ross, J., Hink, L., Weber, E.B., GubryRangin, C., Thion, C., Prosser, J.I. and Nicol, G.W., 2016a. Isolation of ‘Candidatus Nitrosocosmicus franklandus’, a novel ureolytic soil archaeal ammonia oxidiser with tolerance to high ammonia concentration. FEMS Microbiology Ecology, 92(5), fiw057. https://doi.org/10.1093/femsec/fiw057
Lehtovirta-Morley, L.E., Sayavedra-Soto, L.A., Gallois, N., Schouten, S., Stein, L.Y., Prosser, J.I. and Nicol, G.W., 2016b. Identifying Potential Mechanisms Enabling Acidophily in the Ammonia-Oxidizing Archaeon “Candidatus Nitrosotalea devanaterra”. Applied and Environmental Microbiology, 82(9), 2608-2619. https://doi.org/10.1128/AEM.04031-15
Lehtovirta-Morley, L.E., Stoecker, K., Vilcinskas, A., Prosser, J.I. and Nicol, G.W., 2011. Cultivation of an obligate acidophilic ammonia oxidizer from a nitrifying acid soil. Proceedings of the National Academy of Sciences, 108(38), 15892-15897. https://doi.org/10.1073/pnas.1107196108
Leininger, S., Urich, T., Schloter, M., Schwark, L., Qi, J., Nicol, G.W., Prosser, J.I., Schuster, S.C. and Schleper, C., 2006. Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature, 442(7104), 806-809. https://doi.org/10.1038/nature04983
Liu, S., Hu, B., He, Z., Zhang, B., Tian, G., Zheng, P. and Fang, F., 2015. Ammonia-oxidizing archaea have better adapt ability in oxygenated/hypoxic alternant conditions compared to ammonia-oxidizing bacteria. Applied Microbiology and Biotech- nology, 99(20), 8587-8596.
https://doi.org/10.1007/s00253-015-6750-7
Lu, L. and Jia, Z., 2013. Urease gene-containing Archaea dominate autotrophic ammonia oxidation in two acid soils. Environmental Microbiology, 15(6), 1795-1809. https://doi.org/10.1111/1462-2920.12071
Lu, S., Liu, X., Ma, Z., Liu, Q., Wu, Z., Zeng, X., Shi, X. and Gu, Z., 2016. Vertical segregation and phylogenetic characterization of ammonia-oxidizing bacteria and archaea in the sediment of a freshwater aquaculture pond. Frontiers in Microbiology, 6, 1539.
Martens-Habbena, W., Berube, P.M., Urakawa, H., De La Torre, J.R. and Stahl, D.A., 2009. Ammonia oxidation kinetics deter- mine niche separation of nitrifying Archaea and Bacteria. Nature, 461(7266), 976-979. https://doi.org/10.1038/nature08465
Martin-Cuadrado, A.B., Rodriguez-Valera, F., Moreira, D., Al- ba, J.C., Ivars-Mart´ınez, E., Henn, M.R., Talla, E. and Lo´pez Garc´ıa, P., 2008. Hindsight in the relative abundance, metabol- ic potential and genome dynamics of uncultivated marine archaea from comparative metagenomic analyses of bathypelagic plankton of different oceanic regions. The ISME Journal, 2(8), 865-886. https://doi.org/10.1038/ismej.2008.40
Molina, V., Belmar, L. and Ulloa, O., 2010. High diversity of ammonia-oxidizing archaea in permanent and seasonal oxygen deficient waters of the eastern South P acific. Environmental Mi- crobiology, 12(9), 2450-2465. https://doi.org/10.1111/j.1462-2920.2010.02218.x
Monteiro, M., Se´neca, J. and Magalha˜es, C., 2014. The history of aerobic ammonia oxidizers: from the first discoveries to today. Journal of Microbiology, 52(7), 537-547. https://doi.org/10.1007/s12275-014-4114-0
Mosier, A.C., Allen, E.E., Kim, M., Ferriera, S. and Francis, C.A., 2012. Genome sequence of “Candidatus Nitrosopumilus salaria” BD31, an ammonia-oxidizing archaeon from the San Fran- cisco Bay Estuary. Journal of Bacteriology, 194(8), 2121-2122. https://doi.org/10.1128/JB.00013-12
Nicol, G.W., Leininger, S., Schleper, C. and Prosser, J.I., 2008. The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidizing archaea and bacteria. Environmental Microbiology, 10(11), 2966-2978. https://doi.org/10.1111/j.1462-2920.2008.01701.x
Norman, J.S. and Barrett, J.E., 2014. Substrate and nutrient limitation of ammonia-oxidizing bacteria and archaea in temperate forest soil. Soil Biology and Biochemistry, 69(1), 141-146. https://doi.org/10.1016/j.soilbio.2013.11.003
Norman, J.S. and Barrett, J.E., 2016. Substrate availability drives spatial patterns in richness of ammonia-oxidizing bacteria and archaea in temperate forest soils. Soil Biology and Biochemistry, 94, 169-172. https://doi.org/10.1016/j.soilbio.2015.11.015
Ouverney, C.C. and Fuhrman, J.A., 2000. Marine planktonic archaea take up amino acids. Applied and Environmental Microbiology, 66(11), 4829-4833. https://doi.org/10.1128/AEM.66.11.4829-4833.2000
Ouyang, Y., Norton, J.M., Stark, J.M., Reeve, J.R. and Habteselassie, M.Y., 2016. Ammonia-oxidizing bacteria are more responsive than archaea to nitrogen source in an agricultural soil. Soil Biology and Biochemistry, 96, 4-15. https://doi.org/10.1016/j.soilbio.2016.01.012
Oton, E.V., Quince, C., Nicol, G.W., Prosser, J.I. and Gubry Rangin, C., 2016. Phylogenetic congruence and ecological coher- ence in terrestrial Thaumarchaeota. The ISME Journal, 10(1), 85- 96. https://doi.org/10.1038/ismej.2015.101
Park, B.J., Park, S.J., Yoon, D.N., Schouten, S., Damste´, J.S.S. and Rhee, S.K., 2010. Cultivation of autotrophic ammonia- oxidizing archaea from marine sediments in coculture with sulfur-oxidizing bacteria. Applied and Environmental Microbiology, 76(22), 7575-7587. https://doi.org/10.1128/AEM.01478-10
Park, H.D. and Noguera, D.R., 2007. Characterization of two ammonia-oxidizing bacteria isolated from reactors operated with low dissolved oxygen concentrations. Journal of Applied Microbi- ology, 102(5), 1401-1417. https://doi.org/10.1111/j.1365-2672.2006.03176.x
Prosser, J.I. and Nicol, G.W., 2012. Archaeal and bacterial ammonia-oxidisers in soil: the quest for niche specialisation and differentiation. Trends in Microbiology, 20(11), 523-531. https://doi.org/10.1016/j.tim.2012.08.001
Qin, W., Amin, S.A., Martens-Habbena, W., Walker, C.B., Urakawa, H., Devol, A.H., Ingalls, A.E., Moffett, J.W., Armbrust, E.V. and Stahl, D.A., 2014. Marine ammonia-oxidizing archaeal isolates display obligate mixotrophy and wide ecotypic vari- ation. Proceedings of the National Academy of Sciences, 111(34), 12504-12509. https://doi.org/10.1073/pnas.1324115111
Reigstad, L.J., Richter, A., Daims, H., Urich, T., Schwark, L. and Schleper, C., 2008. Nitrification in terrestrial hot springs of Iceland and Kamchatka. FEMS Microbiology Ecology, 64(2), 167- 174. https://doi.org/10.1111/j.1574-6941.2008.00466.x
Santoro, A.E., Francis, C.A., De Sieyes, N.R. and Boehm, A.B., 2008. Shifts in the relative abundance of ammonia-oxidizing bacteria and archaea across physicochemical gradients in a subterranean estuary. Environmental Microbiology, 10(4), 1068-1079. https://doi.org/10.1111/j.1462-2920.2007.01547.x
Sauder, L.A., Albertsen, M., Engel, K., Schwarz, J., Nielsen, P.H., Wagner, M. and Neufeld, J.D., 2017. Cultivation and charac-terization of Candidatus Nitrosocosmicus exaquare, an ammonia-oxidizing archaeon from a municipal wastewater treatment system. The ISME Journal, 11(5), 1142-1157. https://doi.org/10.1038/ismej.2016.192
Sauder, L.A., Peterse, F., Schouten, S. and Neufeld, J.D., 2012. Low-ammonia niche of ammonia-oxidizing archaea in rotating biological contactors of a municipal wastewater treatment plant. En- vironmental Microbiology, 14(9), 2589-2600. https://doi.org/10.1111/j.1462-2920.2012.02786.x
Song, H., Che, Z., Cao, W., Huang, T., Wang, J. and Dong, Z., 2016. Changing roles of ammonia-oxidizing bacteria and archaea in a continuously acidifying soil caused by over-fertilization with nitrogen. Environmental Science and Pollution Research, 23(12), 11964-11974.https://doi.org/10.1007/s11356-016-6396-8
Stahl, D.A. and De La Torre, J.R., 2012. Physiology and diversity of ammonia-oxidizing archaea. Annual review of microbiology, 66, 83-101.https://doi.org/10.1146/annurev-micro-092611-150128
Stempfhuber, B., Engel, M., Fischer, D., Neskovic-Prit, G., Wubet, T., Schio¨ning, I., Gubry-Rangin, C., Kublik, S., Schloter-Hai,
B., Rattei, T. and Welzl, G., 2015. pH as a driver for ammonia- oxidizing archaea in forest soils. Microbial Ecology, 69(4), 879-883.
Stopnisˇek, N., Gubry-Rangin, C., Ho¨fferle, Sˇ., Nicol, G.W., Mandicˇ-Mulec, I. and Prosser, J.I., 2010. Thaumarchaeal ammonia oxidation in an acidic forest peat soil is not influenced by am- monium amendment. Applied and Environmental Microbiology, 76(22), 7626-7634. https://doi.org/10.1128/AEM.00595-10
Suwa, Y., Imamura, Y., Suzuki, T., Tashiro, T. and Urushigawa, Y., 1994. Ammonia-oxidizing bacteria with different sensitivities to (NH4)2SO4 in activated sludges. Water Research, 28(7), 1523- 1532. https://doi.org/10.1016/0043-1354(94)90218-6
Taylor, A.E., Giguere, A.T., Zoebelein, C.M., Myrold, D.D. and Bottomley, P.J., 2016. Modeling of soil nitrification re- sponses to temperature reveals thermodynamic differences between ammonia-oxidizing activity of archaea and bacteria. The ISME Journal, 11(4), 896-908. https://doi.org/10.1038/ismej.2016.179
Tourna, M., Stieglmeier, M., Spang, A., Ko¨nneke, M., Schintlmeister, A., Urich, T., Engel, M., Schloter, M., Wagner, M., Richter, A. and Schleper, C., 2011. Nitrososphaera viennensis, an ammonia oxidizing archaeon from soil. Proceedings of the National Academy of Sciences, 108(20), 8420-8425.
Van Kessel, M.A., Speth, D.R., Albertsen, M., Nielsen, P.H., den Camp, H.J.O., Kartal, B., Jetten, M.S. and Lu¨cker, S., 2015. Com- plete nitrification by a single microorganism. Nature, 528(7583), 555. https://doi.org/10.1038/nature16459
Verhamme, D.T., Prosser, J.I. and Nicol, G.W., 2011. Ammonia concentration determines differential growth of ammonia-oxidising archaea and bacteria in soil microcosms. The ISME Journal, 5(6), 1067-1071. https://doi.org/10.1038/ismej.2010.191
Vissers E. W., Anselmetti F. S., Bodelier P. L. E., Muyzer, G., Schleper, C., Tourna, M. and Laanbroek, H. J., 2013, Temporal and spatial coexistence of archaeal and bacterial amoA genes and gene transcripts in Lake Lucerne. Archaea, 2013.
von Uexkull H. R. and Mutert E.,1995, Plant-Soil Interactions at Low pH, Principles and Management, pp. 5e19, In: Date RA, Grundon NJ, Raymet GE, Probert ME (eds), Plant-Soil Interactions at Low pH, Principles and Management. Kluwer, New York.
Walker, C.B., De La Torre, J.R., Klotz, M.G., Urakawa, H., Pinel, N., Arp, D.J., Brochier-Armanet, C., Chain, P.S.G., Chan, P.P., Gollabgir, A. and Hemp, J., 2010. Nitrosopumilus maritimus genome reveals unique mechanisms for nitrification and autotrophy in globally distributed marine crenarchaea. Proceedings of the National Academy of Sciences, 107(19), 8818-8823. https://doi.org/10.1073/pnas.0913533107
Wuchter, C., Abbas, B., Coolen, M.J.L., Herfort, L., van Blei- jswijk, J., Timmers, P., Strous, M., Teira, E., Herndl, G.J., Middelburg, J.J. and Schouten, S., 2006. Archaeal nitrification in the ocean. Proceedings of the National Academy of Sciences, 103(33), 12317-12322.https://doi.org/10.1073/pnas.0600756103
Yang, Y., Zhang, J., Zhao, Q., Zhou, Q., Li, N., Wang, Y., Xie, S. and Liu, Y., 2016. Sediment ammonia-oxidizing microorganisms in two plateau freshwater lakes at different trophic states. Microbial Ecology, 71(2), 257-265. https://doi.org/10.1007/s00248-015-0642-3
Yao, H., Gao, Y., Nicol, G.W., Campbell, C.D., Prosser, J.I., Zhang, L., Han, W. and Singh, B.K., 2011. Links between ammonia oxidizer community structure, abundance, and nitrification potential in acidic soils. Applied and Environmental Microbiology, 77(13), 4618-4625.
https://doi.org/10.1128/AEM.00136-11
Zhang, X., Tang, Y., Shi, Y., He, N., Wen, X., Yu, Q., Zheng, C., Sun, X. and Qiu, W., 2016. Responses of soil hydrolytic enzymes, ammonia-oxidizing bacteria and archaea to nitrogen applications in a temperate grassland in Inner Mongolia. Scientific Reports, 6(6), 32791. https://doi.org/10.1038/srep32791
Zhou, Z.F., Wang, M.X., Liu, W.L., Li, Z.L., Luo, F. and Xie, D.T., 2015. A comparative study of ammonia-oxidizing archaea and bacteria in acidic and alka line purple soils. Annals of Microbiology, 66(2), 615-623. https://doi.org/10.1007/s13213-015-1143-9
DOI: https://doi.org/10.26789/AEB.2017.01.002
Refbacks
- There are currently no refbacks.
Copyright (c) 2017 Shuai Liu, Jiajie Hu, Jiaxian Shen, Shu Chen, Guangming Tian, Ping Zheng, Liping Lou, Fang Ma, Baolan Hu

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.