Metagenomic analysis of compositions and metabolic potential of microbial community in production water from CO2- and water-flooded petroleum reservoirs
Abstract
Keywords
Full Text:
References
Alneberg, J., Bjarnason, B.S., de Bruijn, I., 2014. Binning metagenomic contigs by coverage and composition. Nature Methods 11: 1144-1146. https://doi.org/10.1038/nmeth.3103.
Barton, L.L. and Fauque, G.D., 2022. Reduction of sulfur and nitrogen compounds, Sulfate-Reducing Bacteria and Archaea. Springer International Publishing, Cham, 121-171. https://doi.org/10.1007/978-3-030-96703-1_3.
Bell, E., Lamminmäki, T., Alneberg, J., 2018. Biogeochemical cycling by a low-diversity microbial community in deep groundwater. Frontiers in Microbiology 9. https://doi.org/10.3389/fmicb.2018.02129.
Boone, D.R. and Mah, R.A., 2015. Methanosarcina, Bergey's Manual of Systematics of Archaea and Bacteria (eds M.E. Trujillo, S. Dedysh, P. DeVos, B. Hedlund, P. Kämpfer, F.A. Rainey and W.B. Whitman). https://doi.org/10.1002/9781118960608.gbm00519.
Bräsen, C., Esser, D., Rauch, B., 2014. Carbohydrate metabolism in archaea: current insights into unusual enzymes and pathways and their regulation. Microbiology and Molecular Biology Reviews 78: 89-175. https://doi.org/10.1128/mmbr.00041-13.
Buchfink, B., Xie, C., Huson, D.H., 2015. Fast and sensitive protein alignment using DIAMOND. Nature Methods 12: 59-60. https://doi.org/10.1038/nmeth.3176.
Chen, S., Zhou, Y., Chen, Y., 2018. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34: i884-i890. https://doi.org/10.1093/bioinformatics/bty560.
Chen, Y., Pan, J., Yun, Y., 2020. Halomonas plays a central role in the syntrophic community of an alkaline oil reservoir with alkali-surfactant-polymer (ASP) flooding. Science of The Total Environment 747: 141333. https://doi.org/10.1016/j.scitotenv.2020.141333.
Conlette, O.C. and Nnameka, J.N.N., 2018. Methanogenic biodegradation of crude oil storage tank sludge enhances bio-corrosion of mild steel. Euro-Mediterranean Journal for Environmental Integration 3: 34. https://doi.org/10.1007/s41207-018-0077-6.
de Souza Araújo, L., Santana, L.A.R., Otenio, M.H., 2024. Biosurfactant production by Pseudomonas: a systematic review. Applied Biochemistry and Biotechnology. https://doi.org/10.1007/s12010-024-05036-9.
Editors, 2015. Azonexus, Bergey's Manual of Systematics of Archaea and Bacteria (eds M.E. Trujillo, S. Dedysh, P. DeVos, B. Hedlund, P. Kämpfer, F.A. Rainey and W.B. Whitman), pp. 1-3. https://doi.org/10.1002/9781118960608.gbm00995.
Emerson, J.B., Thomas, B.C., Alvarez, W., 2016. Metagenomic analysis of a high carbon dioxide subsurface microbial community populated by chemolithoautotrophs and bacteria and archaea from candidate phyla. Environmental Microbiology 18: 1686-1703. https://doi.org/10.1111/1462-2920.12817.
Eras-Muñoz, E., Farré, A., Sánchez, A., 2022. Microbial biosurfactants: a review of recent environmental applications. Bioengineered 13: 12365-12391. https://doi.org/10.1080/21655979.2022.2074621.
Espinet, A., Shoemaker, C., Doughty, C., 2013. Estimation of plume distribution for carbon sequestration using parameter estimation with limited monitoring data. Water Resources Research 49: 4442-4464. https://doi.org/10.1002/wrcr.20326.
Fredrickson, J.K., Romine, M.F., Beliaev, A.S., 2008. Towards environmental systems biology of Shewanella. Nature Reviews Microbiology 6: 592-603. https://doi.org/10.1038/nrmicro1947.
Freedman, A.J.E., Tan, B.F., Thompson, J.R., 2017. Microbial potential for carbon and nutrient cycling in a geogenic supercritical carbon dioxide reservoir. Environmental Microbiology 19.https://doi.org/10.1111/1462-2920.13706.
Gershenzon, N.I., Ritzi, R.W., Dominic, D.F., 2017. Capillary trapping of CO2 in heterogeneous reservoirs during the injection period. International Journal of Greenhouse Gas Control 59: 13-23.https://doi.org/10.1016/j.ijggc.2017.02.002.
Gilfillan, S.M.V., Lollar, B.S., Holland, G., 2009. Solubility trapping in formation water as dominant CO2 sink in natural gas fields. Nature 458: 614-618. https://doi.org/10.1038/nature07852.
González, J.M. and Buchan, A., 2024. Marinobacterium, Bergey's Manual of Systematics of Archaea and Bacteria (eds M.E. Trujillo, S. Dedysh, P. DeVos, B. Hedlund, P. Kämpfer, F.A. Rainey and W.B. Whitman). https://doi.org/10.1002/9781118960608.gbm01095.pub2.
Goris, T. and Diekert, G., 2016. The Genus Sulfurospirillum, In: Adrian, L., Löffler, F.E. (Eds.), Organohalide-Respiring Bacteria. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 209-234.https://doi.org/10.1007/978-3-662-49875-0_10.
Gulliver, D.M., Lowry, G.V., Gregory, K.B., 2014. CO2 concentration and pH alters subsurface microbial ecology at reservoir temperature and pressure. RSC Advances 4: 17443-17453.https://doi.org/10.1039/C4RA02139H.
Gulliver, D.M., Lowry, G.V., Gregory, K.B., 2016. Comparative study of effects of CO2 concentration and pH on microbial communities from a saline aquifer, a depleted oil reservoir, and a freshwater aquifer. Environmental Engineering Science 33: 806-816. https://doi.org/10.1089/ees.2015.0368.
Huang, W.-C., Liu, Y., Zhang, X., 2021. Comparative genomic analysis reveals metabolic flexibility of Woesearchaeota. Nature Communications 12: 5281.https://doi.org/10.1038/s41467-021-25565-9.
Hyatt, D., Chen, G.-L., LoCascio, P.F., 2010. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11: 119. https://doi.org/10.1186/1471-2105-11-119.
Imachi, H., Nobu, M.K., Nakahara, N., 2020. Isolation of an archaeon at the prokaryote-eukaryote interface. Nature 577: 519-525. https://doi.org/10.1038/s41586-019-1916-6.
Jiang, K. and Ashworth, P., 2021. The development of carbon capture utilization and storage (CCUS) research in China: a bibliometric perspective. Renewable and Sustainable Energy Reviews 138: 110521. https://doi.org/10.1016/j.rser.2020.110521.
Jurelevicius, D., Ramos, L., Abreu, F., 2021. Long-term souring treatment using nitrate and biocides in high-temperature oil reservoirs. Fuel 288: 119731.https://doi.org/10.1016/j.fuel.2020.119731.
Kabacoff, R., 2015. R in Action: Data Analysis and Graphics with R. Manning Publications Co.
Kang, D., Froula, J., Egan, R., 2015. MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ 3: e1165.https://doi.org/10.7717/peerj.1165.
Ke, L., Chen, Y., Liu, P., 2018. Characteristics and optimised fermentation of a novel magnetotactic bacterium, Magnetospirillum sp. ME-1. FEMS Microbiology Letters 365.https://doi.org/10.1093/femsle/fny052.
Khelifi, N., Amin Ali, O., Roche, P., 2014. Anaerobic oxidation of long-chain n-alkanes by the hyperthermophilic sulfate-reducing archaeon, Archaeoglobus fulgidus. The ISME Journal 8: 2153-2166. https://doi.org/10.1038/ismej.2014.58.
Kim, S.-J., Park, S.-J., Cha, I.-T., 2014. Metabolic versatility of toluene-degrading, iron-reducing bacteria in tidal flat sediment, characterized by stable isotope probing-based metagenomic analysis. Environmental Microbiology 16: 189-204. https://doi.org/10.1111/1462-2920.12277.
Kouzuma, A., Kato, S., Watanabe, K., 2015. Microbial interspecies interactions: recent findings in syntrophic consortia. Frontiers in Microbiology 6. https://doi.org/10.3389/fmicb.2015.00477.
Krzywinski, M., Schein, J., Birol, I., 2009. Circos: an information aesthetic for comparative genomics. Genome research 19: 1639-1645. https://doi.org/10.1101/gr.092759.109.
Lawson, C.E., Wu, S., Bhattacharjee, A.S., 2017. Metabolic network analysis reveals microbial community interactions in anammox granules. Nature Communications 8: 15416.https://doi.org/10.1038/ncomms15416.
Li, D., Liu, C.-M., Luo, R., 2015. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31: 1674-1676.https://doi.org/10.1093/bioinformatics/btv033.
Li, W. and Godzik, A., 2006. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22: 1658-1659.https://doi.org/10.1093/bioinformatics/btl158.
Li, X.-X., Mbadinga, S.M., Liu, J.-F., 2017. Microbiota and their affiliation with physiochemical characteristics of different subsurface petroleum reservoirs. International Biodeterioration and Biodegradation 120: 170-185. https://doi.org/10.1016/j.ibiod.2017.02.005.
Li, X., Huang, X., Hu, X., 2024. Effects of hematite on two types of dissolved organic compounds in lignocellulosic anaerobic hydrolysate: Lignin-derived aromatic compounds and denitrifying carbon sources. Bioresource Technology 399: 130606.https://doi.org/10.1016/j.biortech.2024.130606.
Liu, J.-F., Lu, Y.-W., Liu, X.-B., 2020. Dominance of Pseudomonas in bacterial community and inhibition of fumarate addition pathway by injection of nutrients in oil reservoir revealed by functional gene and their transcript analyses. International Biodeterioration and Biodegradation 153: 105039. https://doi.org/10.1016/j.ibiod.2020.105039.
Liu, J.-F., Sun, X.-B., Yang, G.-C., 2015. Analysis of microbial communities in the oil reservoir subjected to CO2-flooding by using functional genes as molecular biomarkers for microbial CO2 sequestration. Frontiers in Microbiology 6: 236. https://doi.org/10.3389/fmicb.2015.00236.
Marietou, A., 2021. Chapter Two-Sulfate reducing microorganisms in high temperature oil reservoirs, In: Gadd, G.M., Sariaslani, S. (Eds.), Advances in Applied Microbiology. Academic Press, pp. 99-131. https://doi.org/10.1016/bs.aambs.2021.03.004.
Mauricio, A.G., Vázquez, S., Nicolás, G., 2022. Looking for the mechanism of arsenate respiration in an arsenate-dependent growing culture of Fusibacter sp. strain 3D3, independent of ArrAB. bioRxiv, 2022.2006.2008.495031. https://doi.org/10.1101/2022.06.08.495031.
Mbow, F.T., Akbari, A., Dopffel, N., 2024. Insights into the effects of anthropogenic activities on oil reservoir microbiome and metabolic potential. New Biotechnology 79: 30-38.https://doi.org/10.1016/j.nbt.2023.11.004.
Moradali, M.F. and Rehm, B.H.A., 2020. Bacterial biopolymers: from pathogenesis to advanced materials. Nature Reviews Microbiology 18: 195-210.https://doi.org/10.1038/s41579-019-0313-3.
Morozova, D., Wandrey, M., Alawi, M., 2010. Monitoring of the microbial community composition in saline aquifers during CO2 storage by fluorescence in situ hybridisation. International Journal of Greenhouse Gas Control 4: 981-989.https://doi.org/10.1016/j.ijggc.2009.11.014.
Mu, A., Boreham, C., Leong, H.X., 2014. Changes in the deep subsurface microbial biosphere resulting from a field-scale CO2 geosequestration experiment. Frontiers in Microbiology 5. https://doi.org/10.3389/fmicb.2014.00209.
Mu, A. and Moreau, J.W., 2015. The geomicrobiology of CO2 geosequestration: a focused review on prokaryotic community responses to field-scale CO2 injection. Frontiers in Microbiology 6.https://doi.org/10.3389/fmicb.2015.00263.
Mu, B.-Z. and Nazina, T.N., 2022. Recent Advances in Petroleum Microbiology. Microorganisms 10: 1706.
https://doi.org/10.3390/microorganisms10091706.
Mulet, M., Gomila, M., Lalucat, J., 2023. Stutzerimonas decontaminans sp. nov. isolated from marine polluted sediments. Systematic and Applied Microbiology 46: 126400.https://doi.org/10.1016/j.syapm.2023.126400.
Navas-Cáceres, O.D., Parada, M., Zafra, G., 2023. Development of a highly tolerant bacterial consortium for asphaltene biodegradation in soils. Environmental Science and Pollution Research 30: 123439-123451. https://doi.org/10.1007/s11356-023-30682-7.
Nejidat, A., Meshulam, M., Diaz-Reck, D., 2023. Emergence of hydrocarbon-degrading bacteria in crude oil-contaminated soil in a hyperarid ecosystem: effect of phosphate addition and augmentation with nitrogen-fixing cyanobacteria on oil bioremediation. International Biodeterioration and Biodegradation 178: 105556. https://doi.org/10.1016/j.ibiod.2022.105556.
Nguyen, P.D., van Ginkel, C.G., Plugge, C.M., 2008. Anaerobic degradation of long-chain alkylamines by a denitrifying Pseudomonas stutzeri. FEMS Microbiology Ecology 66: 136-142.https://doi.org/10.1111/j.1574-6941.2008.00564.x.
Nobu, M.K., Narihiro, T., Kuroda, K., 2016. Chasing the elusive Euryarchaeota class WSA2: genomes reveal a uniquely fastidious methyl-reducing methanogen. The ISME Journal 10: 2478-2487. https://doi.org/10.1038/ismej.2016.33.
Okpala, G.N., Chen, C., Fida, T., 2017. Effect of thermophilic nitrate reduction on sulfide production in high temperature oil reservoir samples. Frontiers in Microbiology 8: 1573.https://doi.org/10.3389/fmicb.2017.01573.
Olm, M.R., Brown, C.T., Brooks, B., 2017. dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. The ISME Journal 11: 2864-2868. https://doi.org/10.1038/ismej.2017.126.
Palleroni, N.J., 2015. Pseudomonas, In: W.B. Whitman, F. Rainey, P. Kämpfer, M. Trujillo, J. Chun, P. DeVos, B. Hedlund, Dedysh, S. (Eds.), Bergey's Manual of Systematics of Archaea and Bacteria (eds M.E. Trujillo, S. Dedysh, P. DeVos, B. Hedlund, P. Kämpfer, F.A. Rainey and W.B. Whitman).https://doi.org/10.1002/9781118960608.gbm01210.
Pannekens, M., Kroll, L., Müller, H., 2019. Oil reservoirs, an exceptional habitat for microorganisms. New Biotechnology 49: 1-9. https://doi.org/10.1016/j.nbt.2018.11.006.
Parks, D.H., Chuvochina, M., Rinke, C., 2021. GTDB: an ongoing census of bacterial and archaeal diversity through a phylogenetically consistent, rank normalized and complete genome-based taxonomy. Nucleic Acids Research 50: D785-D794. https://doi.org/10.1093/nar/gkab776.
Parks, D.H., Imelfort, M., Skennerton, C.T., 2015. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome research 25: 1043-1055. https://doi.org/10.1101/gr.186072.114.
Parks, D.H., Rinke, C., Chuvochina, M., 2017. Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nature Microbiology 2: 1533-1542.https://doi.org/10.1038/s41564-017-0012-7.
Parks, D.H., Tyson, G.W., Hugenholtz, P., 2014. STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics 30: 3123-3124. https://doi.org/10.1093/bioinformatics/btu494.
Qi, C., Zhou, Y., Suenaga, T., 2022. Organic carbon determines nitrous oxide consumption activity of clade I and II nosZ bacteria: Genomic and biokinetic insights. Water Research 209: 117910.https://doi.org/10.1016/j.watres.2021.117910.
Quan, Z.-X., Im, W.-T., Lee, S.-T., 2006. Azonexus caeni sp. nov., a denitrifying bacterium isolated from sludge of a wastewater treatment plant. International Journal of Systematic and Evolutionary Microbiology 56: 1043-1046. https://doi.org/10.1099/ijs.0.64019-0.
Schloss Patrick, D., Westcott Sarah, L., Ryabin, T., 2009. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Applied and Environmental Microbiology 75: 7537-7541.https://doi.org/10.1128/AEM.01541-09.
Sharma, N., Lavania, M., Kukreti, V., 2023. Enhanced oil recovery using indigenous microbiome of high temperature oil reservoirs. Current Microbiology 80: 179.https://doi.org/10.1007/s00284-023-03272-6.
Shelton, J.L., Andrews, R.S., Akob, D.M., 2018. Microbial community composition of a hydrocarbon reservoir 40 years after a CO2 enhanced oil recovery flood. FEMS Microbiology Ecology 94.https://doi.org/10.1093/femsec/fiy153.
Sieber, C.M.K., Probst, A.J., Sharrar, A., 2018. Recovery of genomes from metagenomes via a dereplication, aggregation and scoring strategy. Nature Microbiology 3: 836-843.https://doi.org/10.1038/s41564-018-0171-1.
Song, Z., Chen, S., Zhao, F., 2019. Whole metagenome of injected and produced fluids reveal the heterogenetic characteristics of the microbial community in a water-flooded oil reservoir. Journal of Petroleum Science and Engineering 176: 1198-1207.https://doi.org/10.1016/j.petrol.2019.02.008.
Stemple, B., Gulliver, D., Tinker, K., 2022. Evaluation of the microbial community and geochemistry in produced waters collected from CO2 EOR in the Niagaran Pinnacle Reef. ACS Earth and Space Chemistry 6: 2972-2982. https://doi.org/10.1021/acsearthspacechem.2c00247.
Tang, Y., Hu, S., He, Y., 2021. Experiment on CO2-brine-rock interaction during CO2 injection and storage in gas reservoirs with aquifer. Chemical Engineering Journal 413: 127567.https://doi.org/10.1016/j.cej.2020.127567.
Tian, H., Gao, P., Chen, Z., 2017. Compositions and abundances of sulfate-reducing and sulfur-oxidizing microorganisms in water-flooded petroleum reservoirs with different temperatures in China. Frontiers in Microbiology 8: 143.https://doi.org/10.3389/fmicb.2017.00143.
Tian, H., Gao, P., Qi, C., 2024. Nitrate and oxygen significantly changed the abundance rather than structure of sulphate-reducing and sulphur-oxidising bacteria in water retrieved from petroleum reservoirs. Environmental Microbiology Reports 16: e13248.https://doi.org/10.1111/1758-2229.13248.
Tyne, R.L., Barry, P.H., Lawson, M., 2021. Rapid microbial methanogenesis during CO2 storage in hydrocarbon reservoirs. Nature 600: 670-674. https://doi.org/10.1038/s41586-021-04153-3.
Varjani, S.J., 2017. Microbial degradation of petroleum hydrocarbons. Bioresource Technology 223: 277-286. https://doi.org/10.1016/j.biortech.2016.10.037.
Wang, X., Li, X., Yu, L., 2019. Characterizing the microbiome in petroleum reservoir flooded by different water sources. Science of The Total Environment 653: 872-885.https://doi.org/10.1016/j.scitotenv.2018.10.410.
Wartell, B., Boufadel, M., Rodriguez-Freire, L., 2021. An effort to understand and improve the anaerobic biodegradation of petroleum hydrocarbons: a literature review. International Biodeterioration and Biodegradation 157: 105156. https://doi.org/10.1016/j.ibiod.2020.105156.
Wentzel, A., Lewin, A., Cervantes, F.J., 2013. Deep subsurface oil reservoirs as poly-extreme habitats for microbial life. A current review, In: Seckbach, J., Oren, A., Stan-Lotter, H. (Eds.), Polyextremophiles: Life Under Multiple Forms of Stress. Springer Netherlands, Dordrecht, pp. 439-466. https://doi.org/10.1007/978-94-007-6488-0_19.
Wu, Y.-W., Simmons, B.A., Singer, S.W., 2015. MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics 32: 605-607.https://doi.org/10.1093/bioinformatics/btv638.
Xu, J., Wang, L., Lv, W., 2023. Metabolic profiling of petroleum-degrading microbial communities incubated under high-pressure conditions. Frontiers in Microbiology 14.https://doi.org/10.3389/fmicb.2023.1305731.
Yifan, L., Lei, Z., Libin, S., 2018. Anaerobic hydrocarbon degradation in oil reservoir environment. Earth Science. https://doi.org/10.3799/dqkx.2018.536.
Zhao, K., Yang, L., Zhang, Y., 2024. Optimal conditions for nano-emulsified vegetable oil synthesis for the biostimulation of 1,1,2-trichloroethane and vinyl chloride contaminated groundwater in bioreactors. Journal of Cleaner Production 456: 142461.https://doi.org/10.1016/j.jclepro.2024.142461.
Zhou, L., Wu, J., Ji, J.-H., 2023. Characteristics of microbiota, core sulfate-reducing taxa and corrosion rates in production water from five petroleum reservoirs in China. Science of The Total Environment 858: 159861. https://doi.org/10.1016/j.scitotenv.2022.159861.
Zhou, Z., Tran, P.Q., Cowley, E.S., 2024. Diversity and ecology of microbial sulfur metabolism. Nature Reviews Microbiology. https://doi.org/10.1038/s41579-024-01104-3.
DOI: https://doi.org/10.26789/AEB.2024.02.006
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Lei Zhou,Gui-Na Qi,Yi-Fan Liu,Jin-Feng Liu,Shi-Zhong Yang,Ji-Dong Gu,Bo-Zhong Mu
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.