Andriessen, N., Ward, B. J., Strande, L., 2019. To char or not to char? Review of technologies to produce solid fuels for resource recovery from faecal sludge. Journal of Water Sanitation and Hygiene for Development, 9(2): 210–224. https://doi.org/10.2166/WASHDEV.2019.184/643634/WASHDEV2019184.PDF
Ariani, I. K., Anifah, E. M., Sholikah, U., Banaget, C. K., Maharani, V. G. S., 2023. Production of bio-briquettes from pineapple peels and sewage sludge as an alternative renewable energy. IOP Conference Series: Earth and Environmental Science, 1201(1): 012014. https://doi.org/10.1088/1755-1315/1201/1/012014
Arora, P., Das, P., Jain, S., Kishore, V. V. N., 2014. A laboratory based comparative study of Indian biomass cookstove testing protocol and Water Boiling Test. Energy for Sustainable Development, 21(1): 81–88. https://doi.org/10.1016/J.ESD.2014.06.001
Atwijukye, O. R. Kulabako, C. Niwagaba, S. Sugden., 2018. Low cost faecal sludge dewatering and carbonisation for production of fuel briquettes. Transformation towards Sustainable and Resilient Wash Services.
B. Krueger., 2021. An investigation of pyrolysis for the treatment of faecal sludge from onsite sanitation systems.
Cofie, O. O., Agbottah, S., Strauss, M., Esseku, H., Montangero, A., Awuah, E., Kone, D., 2006. Solid–liquid separation of faecal sludge using drying beds in Ghana: Implications for nutrient recycling in urban agriculture. Water Research, 40(1): 75–82. https://doi.org/10.1016/J.WATRES.2005.10.023
Donahue, C. J. and Rais, E. A., 2009. Proximate Analysis of Coal. Journal of Chemical Education, 86(2): 222. https://doi.org/10.1021/ed086p222
Gold, M., Ddiba, D. I. W., Seck, A., Sekigongo, P., Diene, A., Diaw, S., Niang, S., Niwagaba, C., Strande, L., 2017. Faecal sludge as a solid industrial fuel: a pilot-scale study. Journal of Water, Sanitation and Hygiene for Development, 7(2): 243–251. https://doi.org/10.2166/WASHDEV.2017.089
ISO 18125. (2017). Solid Biofuels—Determination of Calorific Value.
Kabango, K., Thulu, F. G. D., Mlowa, T., Chisembe, C., Kaonga, C. C., 2023. Effect of carbonisation on combustion characteristics of faecal sludge and sawdust blended briquettes. Environmental Sustainability 2023, 6(3): 331–339. https://doi.org/10.1007/S42398-023-00269-6
Kim, Y., & Parker, W. (2008). A technical and economic evaluation of the pyrolysis of sewage sludge for the production of bio-oil. Bioresource Technology, 99(5), 1409–1416. https://doi.org/10.1016/J.BIORTECH.2007.01.056
Kizito, S., Jjagwe, J., Ssewaya, B., Nekesa, L., Tumutegyereize, P., Zziwa, A., Komakech, A. J., 2022. Biofuel characteristics of non-charred briquettes from dried fecal sludge blended with food market waste: Suggesting a waste-to-biofuel enterprise as a win–win strategy to solve energy and sanitation problems in slums settlements. Waste Management, 140: 173–182. https://doi.org/10.1016/j.wasman.2021.11.029
Krueger, B. C., Fowler, G. D., Templeton, M. R., Moya, B., 2020. Resource recovery and biochar characteristics from full-scale faecal sludge treatment and co-treatment with agricultural waste. Water Research, 169: 115253. https://doi.org/10.1016/J.WATRES.2019.115253
Montangero, A. and Strauss, M., 2004a. Duebendorf: Swiss Federal Institute of Aquatic Science (EAWAG).
Montangero, A. and Strauss, M., 2004b. Faecal sludge treatment.
Muspratt, A. M., Nakato, T., Niwagaba, C., Dione, H., Kang, J., Stupin, L., Regulinski, J., Mbéguéré, M., Strande, L., 2014. Fuel potential of faecal sludge: calorific value results from Uganda, Ghana and Senegal. Journal of Water, Sanitation and Hygiene for Development, 4(2): 223–230. https://doi.org/10.2166/WASHDEV.2013.055
Otieno, A. O., Home, P. G., Raude, J. M., Murunga, S. I., Gachanja, A., 2022. Heating and emission characteristics from combustion of charcoal and co-combustion of charcoal with faecal char-sawdust char briquettes in a ceramic cook stove. Heliyon, 8(8): e10272. https://doi.org/10.1016/J.HELIYON.2022.E10272
Sagor, S. M., Shafiquzzaman, M., Bari, Q. H., 2022. Evaluation of faecal sludge charcoal briquette produced from different binding materials. Https://Doi.Org/10.1680/Jwarm.21.00047, 177(1): 13–22. https://doi.org/10.1680/JWARM.21.00047
Seck, A., Gold, M., Niang, S., Mbéguéré, M., Diop, C., Strande, L., 2015. Faecal sludge drying beds: increasing drying rates for fuel resource recovery in Sub-Saharan Africa. Journal of Water, Sanitation and Hygiene for Development, 5(1): 72–80. https://doi.org/10.2166/WASHDEV.2014.213
Strande, L., Ronteltap, M., Brdjanovic, D., 2014. Faecal Sludge Management. IWA Publishing. https://doi.org/10.2166/9781780404738
Tchobanoglus, G., Burton, F., Stensel, H. D., 2003. Wastewater engineering: Treatment and reuse. American Water Works Association. Journal, 95(5). https://www.proquest.com/openview/82d18bbd088cd47b8eee58569f8f6a36/1?pq-origsite=gscholar&cbl=25142
VITA (Volunteers in Technical Assistance), 1985. Testing the Efficiency of Wood-Burning Cookstoves: Provisional International Standards, Volunteers in Technical Assistance.
Ward, B. J., Yacob, T. W., Montoya, L. D., 2014. Evaluation of solid fuel char briquettes from human waste. Environmental Science and Technology, 48(16): 9852–9858. https://doi.org/10.1021/ES500197H/ASSET/IMAGES/MEDIUM/ES-2014-00197H_0005.GIF
Werther, J. and Ogada, T., 1999. Sewage sludge combustion. Progress in Energy and Combustion Science, 25(1): 55–116. https://doi.org/10.1016/S0360-1285(98)00020-3
Xu, P. P., Sun, K., Du, J., Xie, G., Xing, D., Liu, B. F., 2023. Biochar prepared from human feces (HFBC) as a promoter in biohydrogen production using simulated feces as substrate. Chemical Engineering Journal, 461, 142074. https://doi.org/10.1016/J.CEJ.2023.142074
Yahav Spitzer, R., Belete, Y. Z., Johnson, H. A., Kolusheva, S., Mau, V., Gross, A., 2023. Hydrothermal carbonization reaction severity as an indicator of human-excreta-derived hydrochar properties and it’s combustion. Science of The Total Environment, 872: 162176. https://doi.org/10.1016/J.SCITOTENV.2023.162176
Yaman, S., 2004. Pyrolysis of biomass to produce fuels and chemical feedstocks. Energy Conversion and Management, 45(5): 651–671. https://doi.org/10.1016/S0196-8904(03)00177-8