Adane T., Adugna A. T. and Alemayehu E., 2021. Textile industry effluent treatment techniques. Journal of Chemistry 2021, 1–14. https://doi.org/10.1155/2021/5314404
Afrin S., Shuvo, H. R., Sultana B., et al. 2021. The degradation of textile industry dyes using the effective bacterial consortium. Heliyon 7(10), e08102. https://doi.org/10.1016/j.heliyon.2021.e08102
Akansha K., Chakraborty D. and Sachan S. G., 2019. Decolorization and degradation of Methyl Orange by Bacillus stratosphericus SCA1007. Biocatalysis and Agricultural Biotechnology 18, 101044. https://doi.org/10.1016/j.bcab.2019.101044
Aktar K., Zerin T. and Banik A., 2020. Biodegradation of textile dyes by bacteria isolated from textile industry effluents. Stamford Journal of Microbiology 9(1), 5–8. https://doi.org/10.3329/sjm.v9i1.45649
Andleeb S., Atiq N., Parmar A. N., et al. 2011. An HPLC method development for the assessment of degradation products of anthraquinone dye. Environmental Monitoring and Assessment 176(1-4), 597–604. https://doi.org/10.1007/s10661-010-1606-1
Bera S. P. and Tank, S. K. 2021. Microbial degradation of Procion Red by Pseudomonas stutzeri. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-82494-9
Celia M. P. and Suruthi S. 2016. Textile dye degradation using bacterial strains isolated from textile mill effluent. International Journal of Applied Research 2(3), 337–341.
Chandra R. and Kumar V. 2017. Phytoextraction of heavy metals by potential native plants and their microscopic observation of root growing on stabilized distillery sludge as a prospective tool for in situ phytoremediation of industrial waste. Environmental Science and Pollution Research 24(3), 2605–2619. https://doi.org/10.1007/s11356-016-8022-1
Dubey A., Mishra N., Singh N., et al. 2010. Isolation of dye degrading microorganism. Electronic Journal of Environmental, Agricultural and Food Chemistry 9, 1534-1539.
Fernandes F. H., De Aragão Umbuzeiro G. and Salvadori D. M. F., 2019. Genotoxicity of textile dye C.I. Disperse Blue 291 in mouse bone marrow. Mutation Research/Genetic Toxicology and Environmental Mutagenesis 837, 48–51. https://doi.org/10.1016/j.mrgentox.2018.10.003
Ghodake G. S., Jadhav U., Tamboli D. P., et al. 2011 decolorization of textile dyes and degradation of mono-azo dye Amaranth by Acinetobacter calcoaceticus NCIM 2890. Indian Journal of Microbiology 51(4), 501–508. https://doi.org/10.1007/s12088-011-0131-4
Hampton J. G. and TeKrony D. M. 1995. Handbook of Vigour Test Methods, 3rd ed., The International Seed Testing Association, Zurich.
Ikram M., Naeem M., Zahoor M., et al. 2022. Biological Degradation of the Azo Dye Basic Orange 2 by Escherichia coli: A Sustainable and Ecofriendly Approach for the Treatment of Textile Wastewater. Water 14(13), 2063. https://doi.org/10.3390/w14132063
Ilesanmi O. I., Adekunle A. E., Omolaiye J. A., et al. 2020. Isolation, optimization and molecular characterization of lipase producing bacteria from contaminated soil. Scientific African 8, e00279. https://doi.org/10.1016/j.sciaf.2020.e00279
Wang J., Zhang M., Chen T., et al, 2015. Isolation and identification of a Di-(2-Ethylhexyl) Phthalate-Degrading bacterium and its role in the bioremediation of a contaminated soil. Pedosphere, 25(2), 202–211. https://doi.org/10.1016/s1002-0160(15)60005-4
Kalme S., Jadhav S., Jadhav M. U., et al. 2009. Textile dye degrading laccase from Pseudomonas desmolyticum NCIM 2112. Enzyme and Microbial Technology 44(2), 65–71. https://doi.org/10.1016/j.enzmictec.2008.10.005
Khadka S., Nshimiyimana J. B., Zou P., et al. 2020. Biodegradation kinetics of diethyl phthalate by three newly isolated strains of Pseudomonas. Scientific African 8, e00380. https://doi.org/10.1016/j.sciaf.2020.e00380
Khan S. and Malik A. 2016. Degradation of Reactive Black 5 dye by a newly isolated bacterium Pseudomonas entomophila BS1. Canadian Journal of Microbiology 62(3), 220–232. https://doi.org/10.1139/cjm-2015-0552
Kishor R., Purchase D., Saratale G. D., et al. 2021. Degradation mechanism and toxicity reduction of methyl orange dye by a newly isolated bacterium Pseudomonas aeruginosa MZ520730. Journal of Water Process Engineering, 43, 102300. https://doi.org/10.1016/j.jwpe.2021.102300
Lu Y., Tang F., Wang Y., et al. 2009. Biodegradation of dimethyl phthalate, diethyl phthalate and di-n-butyl phthalate by Rhodococcus sp. L4 isolated from activated sludge. Journal of Hazardous Materials 168(2-3), 938–943. https://doi.org/10.1016/j.jhazmat.2009.02.126
Mahmood R. T., Asad M., Asgher M., et al. 2022. First report on the bioremediation of textile industrial effluents by Piptoporus betulinus IEBL-3 by using response surface methodology. Applied Sciences 12(3), 1090. https://doi.org/10.3390/app12031090
Mishra A., Mishra S., Arshi A., et al. 2020. Plant-Microbe interactions for bioremediation and phytoremediation of environmental pollutants and agro-ecosystem development. In Springer eBooks, 415–436. https://doi.org/10.1007/978-981-13-3426-9_17
Mohapatra P. and Gaonkar O., 2021. An Overview of Toxic Chemicals in Textiles. New Delhi, India: Toxics Link 2021, 41.
Namachivayam A. and Gopalakrishnan A.V. 2023. Effect of Lauric acid against ethanol-induced hepatotoxicity by modulating oxidative stress/apoptosis signalling and HNF4α in Wistar albino rats. Heliyon 9(11), e21267. https://doi.org/10.1016/j.heliyon.2023.e21267
Rana S. and Kumar K. 2017. Study of Phytotoxic effect of textile wastewater on seed germination and seedling growth of Triticum aestivum. International Journal of Biosciences and Technology 10, 58-66.
Rathod M. C., Senjaliya B. and Dhale D., 2015. Effect of textile dye on seed germination of Chickpea. International Journal of Recent Scientific Research 6, 2938-2943.
Reddy S. and Osborne J. W. 2020. Biodegradation and biosorption of Reactive Red 120 dye by immobilized Pseudomonas guariconensis: Kinetic and toxicity study. Water Environment Research 92(8), 1230–1241. https://doi.org/10.1002/wer.1319
Sakthishabarish K., Karthika T., Sandhya S., et al. 2023. Bacterial bioremediation of textile effluent dyes contaminated sites. Research Journal of Biotechnology 18(10), 127–138. https://doi.org/10.25303/1810rjbt1270138
Sarkar S., Banerjee A., Halder U., et al. 2017. Degradation of synthetic azo dyes of textile industry: a sustainable approach using microbial enzymes. Water Conservation Science and Engineering 2(4), 121–131. https://doi.org/10.1007/s41101-017-0031-5
Shah M. P., 2014. Biodegradation of azo dyes by three isolated bacterial strains: an environmental bioremedial approach. Journal of Microbial & Biochemical Technology 6, 007. https://doi.org/10.4172/1948-5948.s3-007
Sharma K., Pandit S., Mathuriya A. S., et al. 2022. Microbial electrochemical treatment of Methyl Red dye degradation using Co-Culture method. Water 15(1), 56. https://doi.org/10.3390/w15010056
Shindhal T., Rakholiya P., Varjani S., et al. 2021 A critical review on advances in the practices and perspectives for the treatment of dye industry wastewater. Bioengineered 12(1), 70–87. https://doi.org/10.1080/21655979.2020.1863034
Srivastava A., Dangi L. K., Kumar S., et al. 2022. Microbial decolorization of Reactive Black 5 dye by Bacillus albus DD1 isolated from textile water effluent: kinetic, thermodynamics & decolorization mechanism. Heliyon 8(2), e08834. https://doi.org/10.1016/j.heliyon.2022.e08834
Tamura K., Stecher G. and Kumar S., 2021. MEGA11: Molecular Evolutionary Genetics Analysis version 11. Molecular Biology and Evolution 38(7), 3022–3027. https://doi.org/10.1093/molbev/msab120
Thangaraj S., Bankole P. O. and Sadasivam S., 2021 Microbial degradation of azo dyes by textile effluent adapted, Enterobacter hormaechei under microaerophilic condition. Microbiological Research 250, 126805. https://doi.org/10.1016/j.micres.2021.126805
Thiruppathi K., Rangasamy K., Ramasamy M., et al. 2021. Evaluation of textile dye degrading potential of ligninolytic bacterial consortia. Environmental Challenges 4, 100078. https://doi.org/10.1016/j.envc.2021.100078
Vaishnavi J., Devanesan S., AlSalhi M. S., et al. 2021. Biosurfactant mediated bioelectrokinetic remediation of diesel contaminated environment. Chemosphere 264, 128377. https://doi.org/10.1016/j.chemosphere.2020.128377
Wei S. T., Chen Y. L., Wu Y. W., et al. 2021. Integrated multi-omics investigations reveal the key role of synergistic microbial networks in removing plasticizer Di-(2-Ethylhexyl) phthalate from estuarine sediments. MSystems 6(3). https://doi.org/10.1128/msystems.00358-21
Yaseen D. A. and Scholz M. 2019. Textile dye wastewater characteristics and constituents of synthetic effluents: a critical review. International Journal of Environmental Science and Technology 16(2), 1193–1226. https://doi.org/10.1007/s13762-018-2130-z
Youssef N. H., Couger M. B., McCully A. L., et al. 2015. Assessing the global phylum level diversity within the bacterial domain: A review. Journal of Advanced Research 6(3), 269–282. https://doi.org/10.1016/j.jare.2014.10.005
Zhang J., 2020. Study Environmental problems of human settlements and countermeasures based on ecological engineering. Study of Ecological Engineering of Human Settlements. In Springer eBooks. pp. 1–39 https://doi.org/10.1007/978-981-15-1373-2