Evaluation of extracellular alkaline proteases from Bacillus for environmentally friendly detergent additives
Abstract
Keywords
Full Text:
References
Agasthya, A.S., Sharma, N, Mohan, A, Mahal, P, 2013. Isolation and molecular characterisation of alkaline protease producing Bacillus thuringiensis. Cell Biochemistry and Biophysics, 66: 45-51.
https://doi.org/10.1007/s12013-012-9396-4
Anbu, P., 2013. Characterization of solvent stable extracellular protease from Bacillus koreensis (BK-P21A). International Journal of Biological Macromolecules, 56: 162-168.
https://doi.org/10.1016/j.ijbiomac.2013.02.014
Annamalai, N., Rajeswari, M.V., Balasubramanian, T., 2014. Extraction, purification and application of thermostable and halostable alkaline protease from Bacillus alveayuensis CAS 5 using marine wastes. Food and Bioproducts Processing, 92: 335-342.
https://doi.org/10.1016/j.fbp.2013.08.009
Arulmani, M., Aparanjini, K., Vasanthi, K., Arumugam, P., Arivuchelvi, M., and Kalaichelvan, P.T., 2007. Purification and partial characterization of serine protease from thermostable alkalophilic Bacillus laterosporus-AK1. World Journal of Microbiology and Biotechnology, 23: 475-481.
https://doi.org/10.1007/s11274-006-9249-7
Asha, B. and Palaniswamy, M., 2018. Optimization of alkaline protease production by Bacillus cereus FT 1 isolated from soil. Journal of Applied Pharmaceutical Science, 8: 119-127.
https://doi.org/10.7324/JAPS.2018.8219
Asker, M.M.S., Mahmoud, M.G., El Shebwy, K., Abd el Aziz, M.S., 2013. Purification and characterization of two thermostable protease fractions from Bacillus megaterium. Journal of Genetic Engineering and Biotechnology, 11: 103-109.
https://doi.org/10.1016/j.jgeb.2013.08.001
Balachandran, C., Vishali, A., Nagendran, N.A., Baskar, K., Hashem, A., Abd Allah, E.F., 2021. Optimization of protease production from Bacillus halodurans under solid state fermentation using agrowastes. Saudi Journal of Biological Sciences, 28: 4263-4269.
https://doi.org/10.1016/j.sjbs.2021.04.069
Baweja, M., Tiwari, R., Singh, P.K., Nain, L., Shukla, P., 2016. An alkaline protease from Bacillus pumilus MP 27: functional analysis of its binding model toward its applications as detergent additive. Frontiers in Microbiology, 7.
https://doi.org/10.3389/fmicb.2016.01195
Bhunia, B., Basak, B., Dey, A., 2012. A review on production of serine alkaline protease by Bacillus spp. Journal of Biochemical Technology, 3: 448-457.
Boominadhan, U., Rajakumar, R., Sivakumaar, P.K.V., Joe, M., 2009. Optimization of protease enzyme production using Bacillus sp. isolated from different wastes. Botany Research International, 2: 83-87.
Chatterjee, J., Giri, S., Maity, S., Sinha, A., Ranjan, A., Rajshekhar, Gupta, S., 2015. Production and characterization of thermostable alkaline protease of Bacillus subtilis (ATCC 6633) from optimized solid-state fermentation. Biotechnology and Applied Biochemistry, 62: 709-718.
https://doi.org/10.1002/bab.1309
Emran, M.A., Ismail, S.A., Hashem, A.M., 2020. Production of detergent stable thermophilic alkaline protease by Bacillus licheniformis ALW1. Biocatalysis and Agricultural Biotechnology, 26: 101631.
https://doi.org/10.1016/j.bcab.2020.101631
Errasti, M.E., Torres, M.J., Mercerat, J.R., Caffini, N.O., López, L.M.I., 2020. Plant proteases from Carica papaya and Vasconcellea quercifolia with potential application for a cleaner processing in tanneries. Biocatalysis and Biotransformation, 38: 357-366.
https://doi.org/10.1080/10242422.2020.1751131
Farhadian, S., Asoodeh, A., Lagzian, M., 2015. Purification, biochemical characterization and structural modeling of a potential htrA-like serine protease from Bacillus subtilis DR8806. Journal of Molecular Catalysis B: Enzymatic, 115: 51-58. https://doi.org/10.1016/j.molcatb.2015.02.001
Folin, O. and Ciocalteu, V., 1927. On tyrosine and tryptophane determinations in proteins. Journal of Biological Chemistry, 73: 627-650.
https://doi.org/10.1016/S0021-9258(18)84277-6
Grbavčić, S., Bezbradica, D., Izrael-Živković, L., Avramović, N., Milosavić, N., Karadžić, I., Knežević-Jugović, Z., 2011. Production of lipase and protease from an indigenous Pseudomonas aeruginosa strain and their evaluation as detergent additives: Compatibility study with detergent ingredients and washing performance. Bioresource Technology, 102: 11226-11233.
https://doi.org/10.1016/j.biortech.2011.09.076
Gul, S., Rahman, M., Ajmal, M., Achakzai, A.K.K., Iqbal, A., 2015. Effects of carbon and nitrogen sources on production of proteases by Bacillus subtilis IC-5. Bangladesh Journal of Botany, 44: 285-292.
https://doi.org/10.3329/bjb.v44i2.38518
Gupta, R., Beg, Q., Lorenz, P., 2002. Bacterial alkaline proteases: molecular approaches and industrial applications. Applied Microbiology and Biotechnology, 59: 15-32.
https://doi.org/10.1007/s00253-002-0975-y
Haddar, A., Agrebi, R., Bougatef, A., Hmidet, N., Sellami-Kamoun, A., Nasri, M., 2009a. Two detergent stable alkaline serine-proteases from Bacillus mojavensis A21: Purification, characterization and potential application as a laundry detergent additive. Bioresource Technology, 100: 3366-3373.
https://doi.org/10.1016/j.biortech.2009.01.061
Haddar, A., Bougatef, A., Agrebi, R., Sellami-Kamoun, A., Nasri, M., 2009b. A novel surfactant-stable alkaline serine-protease from a newly isolated Bacillus mojavensis A21. Purification and characterization. Process Biochemistry, 44: 29-35.
https://doi.org/10.1016/j.procbio.2008.09.003
Hammami, A., Bayoudh, A., Abdelhedi, O., Nasri, M., 2018. Low-cost culture medium for the production of proteases by Bacillus mojavensis SA and their potential use for the preparation of antioxidant protein hydrolysate from meat sausage by-products. Annals of Microbiology, 68: 473-484.
https://doi.org/10.1007/s13213-018-1352-0
Hammami, A., Hamdi, M., Abdelhedi, O., Jridi, M., Nasri, M., Bayoudh, A., 2017. Surfactant- and oxidant-stable alkaline proteases from Bacillus invictae: Characterization and potential applications in chitin extraction and as a detergent additive. International Journal of Biological Macromolecules, 96: 272-281.
https://doi.org/10.1016/j.ijbiomac.2016.12.035
Helal, M.M.I., Amer, H.A.M. Abdelwahed, N., Ghobashy, M.O.I., 2012. Physiological and microbiological studies on production of alkaline protease from locally isolated Bacillus subtilis. Australian Journal of Basic and Applied Sciences, 6: 193-203
Jain, D., Pancha, I., Mishra, S.K., Shrivastav, A., Mishra, S., 2012. Purification and characterization of haloalkaline thermoactive, solvent stable and SDS-induced protease from Bacillus sp.: A potential additive for laundry detergents. Bioresource Technology, 115: 228-236.
https://doi.org/10.1016/j.biortech.2011.10.081
Jaouadi, B., Ellouz-Chaabouni, S., Rhimi, M., Bejar, S., 2008. Biochemical and molecular characterization of a detergent-stable serine alkaline protease from Bacillus pumilus CBS with high catalytic efficiency. Biochimie, 90: 1291-1305.
https://doi.org/10.1016/j.biochi.2008.03.004
Joo, H ‐S. and Chang, C ‐S., 2005. Oxidant and SDS‐stable alkaline protease from a halo‐tolerant Bacillus clausii I‐52: enhanced production and simple purification. Journal of Applied Microbiology, 98: 491-497.
https://doi.org/10.1111/j.1365-2672.2004.02464.x
Joo, H.S. and Choi, J.W., 2012. Purification and characterization of a novel alkaline protease from Bacillus horikoshii. Journal of Microbiology and Biotechnology, 22: 58-68.
https://doi.org/10.4014/jmb.1109.09006
Kalwasińska, A., Jankiewicz, U., Felföldi, T., Burkowska-But, A., Brzezinska, M.S., 2018. Alkaline and halophilic protease production by Bacillus luteus H11 and its potential industrial applications. Food Technology and Biotechnology, 56: 553-561.
https://doi.org/10.17113/ftb.56.04.18.5553
Kannan, M., Mubarakali, D., Thiyonila, B., Krishnan, M., Padmanaban, B., Shantkriti, S., 2019. Insect gut as a bioresource for potential enzymes - an unexploited area for industrial biotechnology. Biocatalysis and Agricultural Biotechnology, 18: 101010.
https://doi.org/10.1016/j.bcab.2019.01.048
Karray, A., Alonazi, M., Horchani, H., Ben Bacha, A., 2021. A novel thermostable and alkaline protease produced from Bacillus stearothermophilus isolated from olive oil mill sols suitable to industrial biotechnology. Molecules, 26: 1139.
Kumar, M., Venkatachalam, P., Govindarajan, N., 2012. Production and purification of alkaline protease from Bacillus sp. MPTK 712 Isolated from dairy sludge. Global Veterinaria, 8: 433-439.
Lakshmi, B.K.M., Ratna Sri, P.V., Ambika Devi, K., Hemalatha, K.P.J., 2014. Media optimization of protease production by Bacillus licheniformis and partial characterization of alkaline protease. International Journal of Current Microbiology and Applied Sciences, 3: 650-659.
Mahakhan, P., Apiso, P., Srisunthorn, K., Vichitphan, K., Vichitphan, S., Punyauppa-path, S., Sawaengkaew, J., 2023. Alkaline protease production from Bacillus gibsonii 6BS15-4 using dairy effluent and its characterization as a laundry detergent additive. Journal of Microbiology and Biotechnology, 33: 195-202.
https://doi.org/10.4014/jmb.2210.10007
Manavalan, T., Manavalan, A., Ramachandran, S., Heese, K., 2020. Identification of a novel thermostable alkaline protease from Bacillus megaterium-TK 1 for the detergent and leather industry. Biology, 9: 472.
Mashayekhi, M.F., Shahbaz, M.H., Ebrahimi, R.M., Gregorian, A., Omidinia, E., 2012. Isolation, purification and characterization of a thermophilic alkaline protease from Bacillus subtilis BP-36. Journal of Sciences, Islamic Republic of Iran, 23: 7-13.
Masi, C., Gemechu, G., Tafesse, M., 2021. Isolation, screening, characterization, and identification of alkaline protease-producing bacteria from leather industry effluent. Annals of Microbiology, 71(1): 24-24.
https://doi.org/10.1186/s13213-021-01631-x
Mhamdi, S., Bkhairia, I., Nasri, R., Mechichi, T., Nasri, M., Kamoun, A.S., 2017. Evaluation of the biotechnological potential of a novel purified protease BS1 from Bacillus safensis S406 on the chitin extraction and detergent formulation. International Journal of Biological Macromolecules, 104: 739-747.
https://doi.org/10.1016/j.ijbiomac.2017.06.062
Moorthy, I.M. and Baskar, R., 2013. Statistical modeling and optimization of alkaline protease production from a newly isolated alkalophilic Bacillus species BGS using response surface methodology and genetic algorithm. Preparative Biochemistry and Biotechnology, 43: 293-314.
https://doi.org/10.1080/10826068.2012.719850
Mothe, T. and Sultanpuram, V.R., 2016. Production, purification and characterization of a thermotolerant alkaline serine protease from a novel species Bacillus caseinilyticus. 3 Biotech, 6: 53.
https://doi.org/10.1007/s13205-016-0377-y
Nilegaonkar, S.S., Zambare, V.P., Kanekar, P.P, Dhakephalkar, P.K., Sarnaik, S.S., 2007. Production and partial characterization of dehairing protease from Bacillus cereus MCM B-326. Bioresource Technology, 98: 1238-1245.
https://doi.org/10.1016/j.biortech.2006.05.003
Oberoi, R., Beg, Q.K., Puri, S., Saxena, R.K., Gupta, R., 2001. Characterization and wash performance analysis of an SDS-stable alkaline protease from a Bacillus sp. World Journal of Microbiology and Biotechnology, 17: 493-497.
https://doi.org/10.1023/A:1011911109179
Pawar, K.S., Singh, P.N., Singh, S.K., 2023. Fungal alkaline proteases and their potential applications in different industries. Frontiers in Microbiology, 14.
https://doi.org/10.3389/fmicb.2023.1138401
Pham, V.H.T., Kim, J., Shim, J., Chang, S., Chung, W., 2022. Purification and characterization of strong simultaneous enzyme production of protease and α-amylase from an extremophile-Bacillus sp. FW2 and its possibility in food waste degradation. Fermentation, 8(1): 12.
https://doi.org/10.3390/fermentation8010012
Puri, S., Beg, Q.K., Gupta, R., 2002. Optimization of alkaline protease production from Bacillus sp. By response surface methodology. Current Microbiology, 44: 286-290.
https://doi.org/10.1007/s00284-001-0006-8
Qazi, J., Nadeem, M., Baig, S., Syed, Q., 2006. Microbial production of alkaline proteases by locally isolated Bacillus subtilis PCSIR-5. Pakistan Journal of Zoology, 39: 109-114.
Qureshi, A., Khushk, I., Bhutto, M.A., Dahot, M., 2011. Optimization of cultural conditions for protease production by Bacillus subtilis EFRL 01. African Journal of Biotechnology, 10: 5173-5181.
Qureshi, A.S., Khushk, I., Ali, C.H., Chisti, Y., Ahmad, A., Majeed, H., 2016. Coproduction of protease and amylase by thermophilic Bacillus sp. BBXS-2 using open solid-state fermentation of lignocellulosic biomass. Biocatalysis and Agricultural Biotechnology, 8: 146-151.
https://doi.org/10.1016/j.bcab.2016.09.006
Rao, M.B., Tanksale, A.M., Ghatge, M.S., Deshpande, V.V., 1998. Molecular and biotechnological aspects of microbial proteases. Microbiology and Molecular Biology Reviews, 62: 597-635.
https://doi.org/10.1128/mmbr.62.3.597-635.1998
Sareen, R. and Mishra, P., 2008. Purification and characterization of organic solvent stable protease from Bacillus licheniformis RSP-09-37. Applied Microbiology and Biotechnology, 79: 399-405.
https://doi.org/10.1007/s00253-008-1429-y
Sarker, P.K., Talukdar, S.A., Deb, P., Sayem, S.M.A., Mohsina, K., 2013. Optimization and partial characterization of culture conditions for the production of alkaline protease from Bacillus licheniformis P003. Springerplus, 2: 506.
https://doi.org/10.1186/2193-1801-2-506
Sathishkumar, R., Ananthan, G., Arun, J., 2015. Production, purification and characterization of alkaline protease by ascidian associated Bacillus subtilis GA CAS8 using agricultural wastes. Biocatalysis and Agricultural Biotechnology, 4: 214-220.
https://doi.org/10.1016/j.bcab.2014.12.003
Sharma, M., Gat, Y., Arya, S., Kumar, V., Panghal, A., Kumar, A., 2019. A review on microbial alkaline protease: an essential tool for various industrial approaches. Industrial Biotechnology, 15: 69-78.
https://doi.org/10.1089/ind.2018.0032
Shikha, Sharan A., Darmwal, N., 2007. Improved production of alkaline protease from a mutant of alkalophilic Bacillus pantotheneticus using molasses as a substrate. Bioresource Technology, 98: 881-5.
https://doi.org/10.1016/j.biortech.2006.03.023
Smulders, E. and Sung, E., 2011. Laundry detergents, 2. ingredients and products. In: Ullman’s Encyclopedia of Industrial Chemistry. Wiley Online Library
Sundararajan, S., Kannan, C.N., Chittibabu, S., 2011. Alkaline protease from Bacillus cereus VITSN04: Potential application as a dehairing agent. Journal of Bioscience and Bioengineering, 111: 128-133.
https://doi.org/10.1016/j.jbiosc.2010.09.009
Ullah, N., Rehman, M.U., Sarwar, A., Nadeem, M., Nelofer, R., Shakir, H.A., Irfan, M., Idrees, M., Naz, S., Nabi, G., Shah, S., Aziz, T., Alharbi, M., Alshammari, A., Alqahtani, F., 2022. Purification, characterization, and application of alkaline protease enzyme from a locally isolated Bacillus cereus strain. Fermentation, 8(11): 628.
https://doi.org/10.3390/fermentation8110628
Wang, H.Y., Liu, D.M., Liu, Y., Cheng, C.F., Ma, Q.Y., Huang, Q., Zhang, Y.Z., 2007. Screening and mutagenesis of a novel Bacillus pumilus strain producing alkaline protease for dehairing. Letters in Applied Microbiology, 44: 1-6.
https://doi.org/10.1111/j.1472-765X.2006.02039.x
Wang, J., Xu, A., Wan, Y., Li, Q., 2013. Purification and characterization of a new metallo-neutral protease for beer brewing from Bacillus amyloliquefaciens SYB-001. Applied Biochemistry and Biotechnology, 170: 2021-2033.
https://doi.org/10.1007/s12010-013-0350-8
Yang, H., Liu, Y., Ning, Y., Wang, C., Zhang, X., Weng, P., Wu, Z., 2020a. Characterization of an intracellular alkaline serine protease from Bacillus velezensis SW5 with fibrinolytic activity. Current Microbiology, 77: 1610-1621.
https://doi.org/10.1007/s00284-020-01977-6
Yang, S., Zhai, L., Huang, L., Meng, D., Li, J., Hao, Z., Guan, Z., Cai, Y., Liao, X., 2020b. Mining of alkaline proteases from Bacillus altitudinis W3 for desensitization of milk proteins: Their heterologous expression, purification, and characterization. International Journal of Biological Macromolecules, 153: 1220-1230.
https://doi.org/10.1016/j.ijbiomac.2019.10.252
Yilmaz, B., Baltaci, M.O., Sisecioglu, M., Adiguzel, A., 2016. Thermotolerant alkaline protease enzyme from Bacillus licheniformis A10: purification, characterization, effects of surfactants and organic solvents. Journal of Enzyme Inhibition and Medicinal Chemistry, 31: 1241-1247.
https://doi.org/10.3109/14756366.2015.1118687
DOI: https://doi.org/10.26789/AEB.2024.01.004
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Kanoknart Prabmark, Kanphorn Saeng-kla, Katewadee Boonyapakron, Katesuda Aiewviriyasakul, Wipawee Sritusnee, Benjarat Bunterngsook, Wasin Poncheewin, Pattanop Kanokratana, Verawat Champreda, Thanaporn Laothanachareon
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.