Abedi, E. and Hashemi, S.M.B., 2020. Lactic acid production - producing microorganisms and substrates sources-state of art. Heliyon, 6(10): e04974.
https://doi.org/10.1016/j.heliyon.2020.e04974
Ahmad, A., Banat, F. and Taher, H., 2020. A review on the lactic acid fermentation from low-cost renewable materials: Recent developments and challenges. Environmental Technology & Innovation, 20: 101138.
https://doi.org/10.1016/j.eti.2020.101138
Alves de Oliveira, R., Schneider, R., Vaz Rossell, C.E., Maciel Filho, R., Venus, J., 2019. Polymer grade l-lactic acid production from sugarcane bagasse hemicellulosic hydrolysate using Bacillus coagulans. Bioresource Technology Reports, 6: 26-31.
https://doi.org/10.1016/j.biteb.2019.02.003
Chen, W-H., Nižetić, S., Sirohi, R., Huang, Z., Lugue, R., Papadopoulos, A.M., Sakthivel, R., Nguyen, X.P., Hoang, A.T., 2022. Liquid hot water as sustainable biomass pretreatment technique for bioenergy production: A review. Bioresource Technology, 344: 126207.
https://doi.org/10.1016/j.biortech.2021.126207
de Albuquerque, T.L., Marques Júnior, J.E., de Queiroz, L.P., Souza Ricardo, A.D., Ponte Rocha, M.V., 2021. Polylactic acid production from biotechnological routes: A review. International Journal of Biological Macromolecules, 186: 933-951.
https://doi.org/10.1016/j.ijbiomac.2021.07.074
dos Reis, L., Fontana, R.C., da Silva Delabona, P., da Silva Lima, D.J., Camassola, M., da Cruz Pradella, J.G., Pinheiro Dillon, A.J., 2013. Increased production of cellulases and xylanases by Penicillium echinulatum S1M29 in batch and fed-batch culture. Bioresource Technology, 146: 597-603.
https://doi.org/10.1016/j.biortech.2013.07.124
Egüés, I., Sanchez, C., Mondragon, I., Labidi, J., 2012. Separation and Purification of Hemicellulose by Ultrafiltration. Industrial & Engineering Chemistry Research, 51(1): 523-530.
https://doi.org/10.1021/ie202304q
Farah, S., Anderson, D.G. and Langer, R., 2016. Physical and mechanical properties of PLA, and their functions in widespread applications — A comprehensive review. Advanced Drug Delivery Reviews, 107: 367-392.
https://doi.org/10.1016/j.addr.2016.06.012
Han, X., Liu, J., Tian, S., Tao, F., Xu, P., 2022. Microbial cell factories for bio-based biodegradable plastics production. iScience, 25(11): 105462.
https://doi.org/10.1016/j.isci.2022.105462
He, W., Ye, L., Coates, P., Caton-Rose, F., Zhao, X., 2023. Construction of fully biodegradable poly(L-lactic acid)/poly(D-lactic acid)-poly(lactide-co-caprolactone) block polymer films: Viscoelasticity, processability and flexibility. International Journal of Biological Macromolecules, 236: 123980.
https://doi.org/10.1016/j.ijbiomac.2023.123980
Huang, J., Wang, J. and Liu, S., 2023a. Advanced Fermentation Techniques for Lactic Acid Production from Agricultural Waste. Fermentation, 9: 765.
https://doi.org/10.3390/fermentation9080765
Huang, S., Xue, Y., Yu, B., Wang, L., Zhou, C., Ma, Y., 2021. A Review of the Recent Developments in the Bioproduction of Polylactic Acid and Its Precursors Optically Pure Lactic Acids. in: Molecules, 26: 6446.
https://doi.org/10.3390/molecules26216446
Huang, Y., Wang, Y., Shang, N., Li, P., 2023b. Microbial Fermentation Processes of Lactic Acid: Challenges, Solutions, and Future Prospects. in: Foods, 12: 2311.
https://doi.org/10.3390/foods12122311
Miftah, A.K., Sittijunda, S., Imai, T., Salakkam, A., Reungsang, A., 2022. Biohydrogen and Methane Production from Sugarcane Leaves Pretreated by Deep Eutectic Solvents and Enzymatic Hydrolysis by Cellulolytic Consortia. in: Fermentation, 8.
https://doi.org/10.3390/fermentation8080396
Ohara, H., Owaki, M. and Sonomoto, K., 2006. Xylooligosaccharide fermentation with Leuconostoc lactis. Journal of Bioscience and Bioengineering, 101(5): 415-420.
https://doi.org/10.1263/jbb.101.415
Ohara H., Yahata M., Uchida K., Kondo, H., 1998. NAD and NADP utilization by hetero-lactic acid bacteria. Japanese Journal of Lactic Acid Bacteria, 9(1): 2-4.
https://doi.org/10.4109/JSLAB1997.9.2
Ojo, A.O. and de Smidt, O., 2023. Lactic Acid: A Comprehensive Review of Production to Purification. Processes, 11(3): 688.
https://doi.org/10.3390/pr11030688
Okano, K., Tanaka, T., Ogino, C., Fukuda, H., Kondo, A., 2010. Biotechnological production of enantiomeric pure lactic acid from renewable resources: recent achievements, perspectives, and limits. Applied Microbiology and Biotechnology, 85(3): 413-423.
https://doi.org/10.1007/s00253-009-2280-5
Oshiro, M., Shinto, H., Tashiro, Y., Miwa, N., Sekiguchi, T., Okamoto, M., Ishizaki, A., Sonomoto, K., 2009. Kinetic modeling and sensitivity analysis of xylose metabolism in Lactococcus lactis IO-1. Journal of Bioscience and Bioengineering, 108(5): 376-384.
https://doi.org/10.1016/j.jbiosc.2009.05.003
Patel, M., Ou, M., Ingram, L.O., Shanmugam, K.T., 2004. Fermentation of sugar cane bagasse hemicellulose hydrolysate to L(+)-lactic acid by a thermotolerant acidophilic Bacillus sp. Biotechnology Letters, 26(11): 865-868.
https://doi.org/10.1023/b:bile.0000025893.27700.5c
Peng, L., Xie, N., Guo, L., Wang, L., Yu, B., Ma, Y., 2014. Efficient open fermentative production of polymer-grade L-lactate from sugarcane bagasse hydrolysate by thermotolerant Bacillus sp. strain P38. PLoS One, 9(9): e107143.
https://doi.org/10.1371/journal.pone.0107143
Pohanka, M., 2020. D-Lactic Acid as a Metabolite: Toxicology, Diagnosis, and Detection. BioMed Research International, 2020(3419034): 9.
https://doi.org/10.1155/2020/3419034
Pontes, R., Romaní, A., Michelin, M., Domingues, L., Teixeira, J., Nunes, J., 2021. L-lactic acid production from multi-supply autohydrolyzed economically unexploited lignocellulosic biomass. Industrial Crops and Products, 170: 113775.
https://doi.org/10.1016/j.indcrop.2021.113775
Powar, R.V., Mehetre, S.A., Powar, T.R., Patil, S.B., 2022. End-Use Applications of Sugarcane Trash: A Comprehensive Review. Sugar Tech, 24(3): 699-714.
https://doi.org/10.1007/s12355-022-01107-5
Qiu, Z., Han, X., Fu, A., Jiang, Y., Zhang, W., Jin, C., Li, D., Xia, J., He, J., Deng, Y., Xu, N., Liu, X., He, A., Gu, H., Xu, J., 2023. Enhanced cellulosic d-lactic acid production from sugarcane bagasse by pre-fermentation of water-soluble carbohydrates before acid pretreatment. Bioresource Technology, 368: 128324.
https://doi.org/10.1016/j.biortech.2022.128324
Qureshi, A.S., Ji, X., Khushk, I., Mirjatt, A.N., Tunio, A.A., Huang, Y., 2023. Ionic liquid and diluted sulfuric acid combinatorial pretreatment for efficient sugarcane bagasse conversion to L-lactic acid. Industrial Crops and Products, 204: 117272.
https://doi.org/10.1016/j.indcrop.2023.117272
Rawoof, S.A.A., Kumar, P.S., Vo, D.N., Devaraj, K., Mani, Y., Devaraj, T., Subramanian, S., 2020. Production of optically pure lactic acid by microbial fermentation: a review. Environmental Chemistry Letters, 19: 539-556.
https://doi.org/10.1007/s10311-020-01083-w
Sasaki, C., Okumura, R., Asakawa, A., Asada, C., Nakamura, Y., 2012. Production of D-lactic acid from sugarcane bagasse using steam-explosion. Journal of Physics: Conference Series, 352(1): 012054.
https://doi.org/10.1088/1742-6596/352/1/012054
Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., Crocker, D., 2010. Determination of structural carbohydrates and lignin in biomass. Technical report NREL/TP-510-42618, National Renewable Energy Laboratory (NREL), Colorado
Sun, F.F., Hong, J., Hu, J., Saddler, J.N., Fang, X., Zhang, Z., Shen, S., 2015. Accessory enzymes influence cellulase hydrolysis of the model substrate and the realistic lignocellulosic biomass. Enzyme and Microbial Technology, 79-80: 42-48.
https://doi.org/10.1016/j.enzmictec.2015.06.020
Swetha, T.A., Ananthi, V., Bora, A., Sengottuvelan, N., Ponnuchamy, K., Muthusamy, G., Arun, A., 2023. A review on biodegradable polylactic acid (PLA) production from fermentative food waste - Its applications and degradation. International Journal of Biological Macromolecules, 234: 123703.
https://doi.org/10.1016/j.ijbiomac.2023.123703
van der Pol, E.C., Vaessen, E., Weusthuis, R.A., Eggink, G., 2016. Identifying inhibitory effects of lignocellulosic by-products on growth of lactic acid producing micro-organisms using a rapid small-scale screening method. Bioresource Technolology, 209: 297-304.
https://doi.org/10.1016/j.biortech.2016.03.037
Wang, Y., Tashiro, Y. and Sonomoto, K., 2015. Fermentative production of lactic acid from renewable materials: Recent achievements, prospects, and limits. Journal of Bioscience and Bioengineering, 119(1): 10-18.
https://doi.org/10.1016/j.jbiosc.2014.06.003
Yang, P., Tian, Y., Wang, Q., Cong, W., 2015. Effect of different types of calcium carbonate on the lactic acid fermentation performance of Lactobacillus lactis. Biochemical Engineering Journal, 98: 38-46.
https://doi.org/10.1016/j.bej.2015.02.023