Bhatia, S. and Yadav, S.K., 2023. CRISPR-Cas for genome editing: Classification, mechanism, designing and applications. International Journal of Biological Macromolecules, 124054.
https://doi.org/10.1016/j.ijbiomac.2023.124054
Burgio, G. and Teboul, L., 2020. Anticipating and identifying collateral damage in genome editing. Trends in Genetics, 36(12): 905-914.
https://doi.org/10.1016/j.tig.2020.09.011
Chatterjee, N. and Walker, G.C., 2017. Mechanisms of DNA damage, repair, and mutagenesis. Environmental and molecular mutagenesis, 58(5): 235-263.
https://doi.org/10.1002/em.22087
Di Cesare, M., Bentham, J., Stevens, G.A., Zhou, B., Danaei, G., Lu, Y., Bixby, H., Cowan, M.J., Riley, L.M. and Hajifathalian, K., 2016. Trends in adult body-mass index in 200 countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement studies with 19.2 million participants. Lancet, 387(10026).
https://doi.org/10.1016/S0140-6736(16)30054-X
Esquerra, B., Baquedano, I., Ruiz, R., Fernandez, A., Montoliu, L. and Mojica, F.J., 2023. Identification of the EH CRISPR-Cas9 system on a metagenome and its application to genome engineering.
Fang, C., Li, J., Zhang, M., Zhang, Y., Yang, F., Lee, J.Z., Lee, M.-H., Alvarado, J., Schroeder, M.A. and Yang, Y., 2019. Quantifying inactive lithium in lithium metal batteries. Nature, 572(7770): 511-515.
https://doi.org/10.1038/s41586-019-1481-z
Gao, Z., Fan, M., Das, A.T., Herrera-Carrillo, E. and Berkhout, B., 2020. Extinction of all infectious HIV in cell culture by the CRISPR-Cas12a system with only a single crRNA. Nucleic Acids Research, 48(10): 5527-5539.
https://doi.org/10.1093/nar/gkaa226
Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J.A. and Charpentier, E., 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. science, 337(6096): 816-821.
https://doi.org/10.1126/science.1225829
Javaid, D., Ganie, S.Y., Hajam, Y.A. and Reshi, M.S., 2022. CRISPR/Cas9 system: a reliable and facile genome editing tool in modern biology. Molecular Biology Reports, 1-18.
https://doi.org/10.1007/s11033-022-07880-6
Karvelis, T., Gasiunas, G., Young, J., Bigelyte, G., Silanskas, A., Cigan, M. and Siksnys, V., 2015. Rapid characterization of CRISPR-Cas9 protospacer adjacent motif sequence elements. Genome biology, 16, 1-13.
https://doi.org/10.1186/s13059-015-0818-7
Liu, R., Liang, L., Freed, E.F. and Gill, R.T., 2021. Directed evolution of CRISPR/Cas systems for precise gene editing. Trends in Biotechnology, 39(3): 262-273.
https://doi.org/10.1016/j.tibtech.2020.07.005
Miyaoka, Y., Berman, J.R., Cooper, S.B., Mayerl, S.J., Chan, A.H., Zhang, B., Karlin-Neumann, G.A. and Conklin, B.R., 2016. Systematic quantification of HDR and NHEJ reveals effects of locus, nuclease, and cell type on genome-editing. Scientific reports, 6(1): 23549.
https://doi.org/10.1038/srep23549
Makarova, K.S., Wolf, Y.I., Iranzo, J., Shmakov, S.A., Alkhnbashi, O.S., Brouns, S.J., Charpentier, E., Cheng, D., Haft, D.H. and Horvath, P., 2020. Evolutionary classification of CRISPR-Cas systems: a burst of class 2 and derived variants. Nature Reviews Microbiology, 18(2): 67-83.
https://doi.org/10.1038/s41579-019-0299-x
Mohanraju, P., Saha, C., van Baarlen, P., Louwen, R., Staals, R.H. and van der Oost, J., 2022. Alternative functions of CRISPR-Cas systems in the evolutionary arms race. Nature Reviews Microbiology, 20(6): 351-364.
https://doi.org/10.1038/s41579-021-00663-z
Nasrallah, A., Sulpice, E., Kobaisi, F., Gidrol, X. and Rachidi, W., 2022. CRISPR-Cas9 Technology for the Creation of Biological Avatars Capable of Modeling and Treating Pathologies: From Discovery to the Latest Improvements. Cells, 11(22): 3615.
https://doi.org/10.3390/cells11223615
Pandey, P., Mysore, K.S. and Senthil-Kumar, M., 2022. Recent advances in plant gene silencing methods. Plant Gene Silencing: Methods and Protocols, 1-22.
https://doi.org/10.1007/978-1-0716-1875-2_1
Provasek, V.E., Mitra, J., Malojirao, V.H. and Hegde, M.L., 2022. DNA double-strand breaks as pathogenic lesions in neurological disorders. International Journal of Molecular Sciences, 23(9): 4653.
https://doi.org/10.3390/ijms23094653
Rath, D., Amlinger, L., Rath, A. and Lundgren, M., 2015. The CRISPR-Cas immune system: biology, mechanisms and applications. Biochimie, 117, 119-128.
https://doi.org/10.1016/j.biochi.2015.03.025
Shin, S.W., Kyeong, M. and Lee, J.S., 2022. Next-Generation Cell Engineering Platform for Improving Recombinant Protein Production in Mammalian Cells. In Cell Culture Engineering and Technology: In appreciation to Professor Mohamed Al-Rubeai (pp. 189-224). Springer.
https://doi.org/10.1007/978-3-030-79871-0_7
Sugiyama, T., Zaitseva, E.M. and Kowalczykowski, S.C., 1997. A single-stranded DNA-binding protein is needed for efficient presynaptic complex formation by the Saccharomyces cerevisiae Rad51 protein. Journal of Biological Chemistry, 272(12): 7940-7945.
https://doi.org/10.1074/jbc.272.12.7940
Schulze, S. and Lammers, M., 2020. The development of genome editing tools as powerful techniques with versatile applications in biotechnology and medicine: CRISPR/Cas9, ZnF and TALE nucleases, RNA interference, and Cre/loxP. ChemTexts, 7(1): 3.
https://doi.org/10.1007/s40828-020-00126-7
Tavakoli, K., Pour-Aboughadareh, A., Kianersi, F., Poczai, P., Etminan, A. and Shooshtari, L., 2021. Applications of CRISPR-Cas9 as an advanced genome editing system in life sciences. BioTech, 10(3): 14.
https://doi.org/10.3390/biotech10030014
Zheng, Y., Li, J., Wang, B., Han, J., Hao, Y., Wang, S., Ma, X., Yang, S., Ma, L. and Yi, L., 2020. Endogenous type I CRISPR-Cas: from foreign DNA defense to prokaryotic engineering. Frontiers in bioengineering and biotechnology, 8, 62.
https://doi.org/10.3389/fbioe.2020.00062
Zhang, X., Gu, S., Zheng, X., Peng, S., Li, Y., Lin, Y. and Liang, S., 2021. A novel and efficient genome editing tool assisted by CRISPR-Cas12a/Cpf1 for Pichia pastoris. ACS Synthetic Biology, 10(11): 2927-2937.
https://doi.org/10.1021/acssynbio.1c00172
Xu, H., Xiao, T., Chen, C.-H., Li, W., Meyer, C.A., Wu, Q., Wu, D., Cong, L., Zhang, F. and Liu, J.S., 2015. Sequence determinants of improved CRISPR sgRNA design. Genome research, 25(8): 1147-1157.
https://doi.org/10.1101/gr.191452.115
Ye, Z., Shi, Y., Lees-Miller, S.P. and Tainer, J.A., 2021. Function and molecular mechanism of the DNA damage response in immunity and cancer immunotherapy. Frontiers in immunology, 12, 797880.
https://doi.org/10.3389/fimmu.2021.797880
Ferrari, S., Valeri, E., Conti, A., Scala, S., Aprile, A., Di Micco, R., Kajaste-Rudnitski, A., Montini, E., Ferrari, G. and Aiuti, A., 2023. Genetic engineering meets hematopoietic stem cell biology for next-generation gene therapy. Cell Stem Cell, 30(5): 549-570.
https://doi.org/10.1016/j.stem.2023.04.014
Tavakoli, K., Pour-Aboughadareh, A., Kianersi, F., Poczai, P., Etminan, A. and Shooshtari, L., 2021. Applications of CRISPR-Cas9 as an advanced genome editing system in life sciences. BioTech, 10(3): 14.
https://doi.org/10.3390/biotech10030014