Antibacterial and antioxidant activity of green synthesized Zinc oxide nanoparticles using polyphenol extract from Mentha piperita seeds
Abstract
Keywords
Full Text:
References
Abdel Hady, B.M., Ekram, B., Müller, W.E.G., et al, 2023. Ascorbyl palmitate-PCL fiber mats loaded with strontium polyphosphate nanoparticles for guided bone regeneration. Polymer Bulletin, 1-20.
https://doi.org/10.1007/s00289-023-04868-5
Abdelkhalek, A. and Al-Askar, A.A., 2020. Green Synthesized ZnO Nanoparticles Mediated by Mentha Spicata Extract Induce Plant Systemic Resistance against Tobacco Mosaic Virus. Applied Sciences, 10(15): 5054-5068.
https://doi.org/10.3390/app10155054
Abdelmigid, H.M., Hussien, N.A., Alyamani, A.A., et al, 2022. Green synthesis of zinc oxide nanoparticles using pomegranate fruit peel and solid coffee grounds vs. Chemical method of synthesis, with their biocompatibility and antibacterial properties investigation. Molecules, 27(4): 1236. https://doi.org/10.3390/molecules27041236
Abdullah, J.A.A., Salah-Eddine, L., Abderrhmane, B., et al, 2020. Green synthesis and characterization of iron oxide nanoparticles by pheonix dactylifera leaf extract and evaluation of their antioxidant activity. Sustainable Chemistry and Pharmacy, 17: 218-228.
https://doi.org/10.1016/j.scp.2020.100280
Agarwal, H., Kumar, S.V., and Rajeshkumar, S., 2017. A review on green synthesis of zinc oxide nanoparticles- an eco-friendly approach. Resource-Efficient Technologies, 3(4): 406–413.
https://doi.org/10.1016/j.reffit.2017.03.002
Akroum, S., Bendjeddou, D., Satta, D., et al, 2010. Antibacterial, antioxidant and acute toxicity tests on flavonoids extracted from some medicinal plants. International Journal of Green Pharmacy, 4(3): 165-170.
https://doi.org/10.4103/0973-8258.69174.
Alamdari, S., Ghamsari, M.S., Lee, C., et al, 2020. Preparation and Characterization of Zinc Oxide Nanoparticles Using Leaf Extract of Sambucus ebulus. Applied Sciences, 10(10): 3620-3638.
https://doi.org/10.3390/app10103620
Ananthalakshmi, R., Rajarathinam, S.R.X., and SadiqBlois, A.M., 2019. Antioxidant activity of ZnO Nanoparticles synthesized using Luffa acutangula peel extract. Research Journal of Pharmacy and Technology, 12(4): 1569-1572.
https://doi.org/10.5958/0974-360X.2019.00260.9
Ambika, S. and Sundrarajan, M., 2015. Antibacterial behaviour of Vitex negundo extract assisted ZnO nanoparticles against pathogenic bacteria. Journal of Photochemistry and photobiology B: Biology, 146: 52-57.
https://doi.org/10.1016/j.jphotobiol.2015.02.020
Bauer, A.W., Kirby, W.M., Sherris, J.C., et al, 1996. Antibiotic susceptibility testing by a standardized single disk method. American Journal of Clinical Pathology, 45(4): 493-496.
https://doi.org/10.1093/ajcp/45.4_ts.493
Blois, M.S., 1958. Antioxidant determinations by the use of a stable free radical. Nature, 181(4617): 1199-1200.
https://doi.org/10.1038/1811199a0
Cheemanapalli, S., Mopuri, R., Golla, R., et al, 2018. Syringic acid (SA)-A Review of Its Occurrence, Biosynthesis, Pharmacological and Industrial Importance. Biomedicine and Pharmacotherapy, 108: 547-557. https://doi.org/10.1016/j.biopha.2018.09.069
Debnath, D., and Gupta, A.K., 2018. Optimizing the fabrication of nano-plasmonic silver nitrogen co-doped zinc oxide (Ag x Zn (1-x) N y O (1-y)) mediated by ammonia template: insight into its enhanced physiochemical and photocatalytic behavior. Journal of Molecular Liquids, 249: 334-345. https://doi.org/10.1016/J.MOLLIQ.2017.11.050
Deepika, M.S., Thangam, R., Vijayakumar, T.S., et al, 2019. Antibacterial synergy between rutin and florfenicol enhances therapeutic spectrum against drug resistant Aeromonas hydrophila. Microbial pathogenesis, 135: 103612. https://doi.org/10.1016/j.micpath.2019.103612
Dogaroglu, Z.G., Uysal, Y., Caylali, Z., et al, 2023. Green nanotechnology advances: green manufacturing of zinc nanoparticles, characterization, and foliar application on wheat and antibacterial characteristics using Mentha spicata (mint) and Ocimum basilicum (basil) leaf extracts. Environmental Science and Pollution Research, 30:60820-60837
https://doi.org/10.1007/s11356-023-26827-3
Divya, M.J., Sowmia, C., Joona, K., et al, 2013. Synthesis of zinc oxide nanoparticle from Hibiscus rosa-sinensis leaf extract and investigation of its antimicrobial activity. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 4(2): 1137-1142.
Djeridane, A., Yousfi, M., Nadjemi, B., et al, 2006. Antioxidant activity of some algerian medicinal plants extracts containing phenolic compounds. Food Chemistry, 97(4): 654-660.
https://doi.org/10.1016/j.foodchem.2005.04.028
Eldurini, S., Shafaa, M.W., Abd-ElHady, B.M., et al, 2021. A multicompartment vascular implant of electrospun wintergreen oil/ polycaprolactone fibers coated with (polyethylene oxide). Biomedical Journal, 44(5): 589–597. https://doi.org/10.1016/j.bj.2020.04.008
Estrada-Urbina, J., Cruz-Alonso, A., Santander-Gonzalez, M., et al, 2018. Nanoscale zinc oxide particles for improving physiological and salinity quality of a Mexican landrace of red maize. 8(4): 247-255.
https://doi.org/10.3390/nano8040247
Gironi, F., and Piemonte, V., 2011. Temperature and solvent effects on polyphenol extraction process from chestnut tree wood. Chemical Engineering Research and Design, 89(7): 857-862.
https://doi.org/10.1016/j.cherd.2010.11.003
Guneidy, R.A., Gad, A.M., Zaki, E.R., et al, 2020. Antioxidant or pro-oxidant and glutathione transferase P1-1 inhibiting activities for Tamarindus indica seeds and their cytotoxic effect on MCF-7 Cancer cell line. Journal of Genetic Engineering & Biotechnology, 18(1): 74-89.
https://doi.org/10.1186/s43141-020-00077-z
Guneidy, R.A., Zaki, E.R., Gad, A.M., et al, 2022. Evaluation of Phenolic Content Diversity along with Antioxidant/Pro-Oxidant, Glutathione Transferase Inhibition, and Cytotoxic Potential of Selected Commonly Used Plants. Preventive Nutrition and Food Science, 27(3):282-298.
https://doi.org/10.3746/pnf.2022.27.3.282
Hu, X., Cook, S., Wang, P., et al, 2009. In vitro evaluation of cytotoxicity of engineered metal oxide nanoparticles. Science of The Total Environment, 407(8): 3070-3072.
https://doi.org/10.1016/j.scitotenv.2009.01.033
Jain, D., Bhojiya, A.A., Singh, H., et al, 2020. Microbial Fabrication of Zinc Oxide Nanoparticles and Evaluation of Their Antimicrobial and Photocatalytic Properties. Frontiers in Chemistry, 8: 778.
https://doi.org/10.3389/fchem.2020.00778
Jiang, S., Lin, K., and Cai, M., 2020. ZnO Nanomaterials: Current Advancements in Antibacterial Mechanisms and Applications. Frontiers in Chemistry, 8: 580-592. https://doi.org/10.3389/fchem.2020.00580
Imani, A., Maleki, N., Bohlouli, S., et al, 2021. Molecular mechanisms of anticancer effect of rutin. Phytotherapy Research, 35(5): 2500-2513.
https://doi.org/10.1002/ptr.6977
Jim ́enez-Rosado, M., Gomez-Zavaglia, A., Guerrero, A., et al, 2022. Green synthesis of ZnO nanoparticles using polyphenol extracts from pepper waste (Capsicum annuum). Journal of Cleaner Production, 350: 131541. https://doi.org/10.1016/j.jclepro.2022.131541
Karamac, M., Kosinska, A., and Pegg, R.B., 2005. Comparison of radical–scavenging activities of selected phenolic acids. Polish Journal of Food and Nutrition Sciences, 55(2): 165–170.
Karaoglan, E.S., Hancı, H., Koca, et al, 2023. Some Bioactivities of Isolated Apigenin-7-O-glucoside and Luteolin-7-O-glucoside. Applied Sciences, 13(3): 1503-1513.
https://doi.org/10.3390/app13031503
Kim, K.H., Tsao, R., Yang, R., et al, 2006. Phenolic acid profiles and antioxidant activities of wheat bran extracts and the effect of hydrolysis
conditions. Food Chemistry, 95(3): 466-473. https://doi.org/10.1016/j.foodchem.2005.01.032
Koli, K., Rohtela, K., and Meena, D., 2022. Comparative study and analysis of structural and optical properties of zinc oxide nanoparticles using neem and mint extract prepared by green synthesis method. In IOP International Conference Series: Materials Science and Engineerin, 1248(1): 012065.
https://doi.org/10.1088/1757-899X/1248/1/012065
Lakshmi, J.V., Sharath, R., Chandraprabha, M.N., et al, 2012. Synthesis, characterization and evaluation of antimicrobial activity of zinc oxide nanoparticles. Journal of Biochemical Technology, 3(5): S151–S154.
Li, C. J., 2016. Reflection and perspective on green chemistry development for chemical synthesis-Daoist insights. Green Chemistry, 18(7): 1836-1838.
Lin, J.Y., Tang, C.Y., 2007. Determination of total phenolic and flavonoid contents in selected fruits and vegetables, as well as their stimulatory effects on mouse splenocyte proliferation. Food Chemistry, 101(1): 140-147. https://doi.org/10.1016/j.foodchem.2006.01.014
Lipiński, K., Mazur, M., Antoszkiewicz, Z., et al, 2017. Polyphenols in monogastric nutrition-a review. Annals of Animal Science, 17(1): 41–58. https://doi.org/10.1515/aoas-2016-0042
Luo, Z., Wu, Q., Xue, J., et al, 2013. Selectively enhanced antibacterial effects and ultraviolet activation of antibiotics with ZnO nanorods against Escherichia coli. Journal of Biomedical Nanotechnology, 9(1): 69-76.
https://doi.org/10.1166/jbn.2013.1472
Martins, N., Ferreira, I.C., Barros, et al, 2015. Plants used in folk medicine: The potential of their hydromethanolic extracts against Candida species. Industrial crops and products, 66: 62-67.
https://doi.org/10.1016/j.indcrop.2014.12.033
Nematollahi, F., Konjini, F.T., and Hergalani, F.Z., 2021. Determination of the antioxidant activity of Calendula officinalis extract and its role in synthesis of ZnO nanoparticles. Journal of Food Technology and Nutrition, 18(4): 127-134.
Ozbek, H.N., Halahlih, F., Gogus, F., et al, 2020. Pistachio (Pistacia vera L.) Hull as a potential source of phenolic compounds: evaluation of ethanol–water binary solvent extraction on antioxidant activity and phenolic content of Pistachio Hull extracts. Waste and Biomass Valorization, 11(2): 2101–2110.
https://doi.org/10.1007/s12649-018-0512-6
Petcharoen, K., and Sirivat, A.J.M.S., 2012. Synthesis and characterization of magnetite nanoparticles via the chemical co-precipitation method. Materials Science and Engineering B, 177(5): 421-427.
https://doi.org/10.1016/j.mseb.2012.01.003
Prabhu, S., and Poulose, E.K., 2012. Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. International Nano Letters, 2: 1-10.
https://doi.org/10.1186/2228-5326-2-32
Prado, J.M., Vardanega, R., Debien, I.C.N., et al, 2021. Conventional extraction. In Food waste recovery, pp. 109–127. Academic Press.
Pramila, D.M., Xavier, X., Marimuthu, k., et al, 2012. Phytochemical analysis and antimicrobial potential of methanolic leaf extract of peppermint (Minta piperita: Lamiaceae). Journal of Medicinal Plants Research. 6(2): 331-333. https://doi.org/10.5897/JMPR11.123
Quideau, S., Deffieux, D., Douat-Casassus, C., et al, 2011. Plant polyphenols: Chemical properties, biological activities, and synthesis. Angewandte Chemie International Edition, 50(3): 586-621.
https://doi.org/10.1002/anie.201000044
Rajeswari, V.D., Khalifa, A.S., Elfasakhany, A., et al, 2021. Green and ecofriendly synthesis of cobalt oxide nanoparticles using Phoenix dactylifera L: antimicrobial and photocatalytic activity. Applied Nanoscience, 13(2): 1367-1375.
https://doi.org/10.1007/s13204-021-02038-5
Reddy, L.S., Mary, M.N., Mary, J., et al, 2014. Antimicrobial activity of zinc oxide (ZnO) nanoparticle against Klebsiella pneumoniae. Pharmaceutical biology, 52(11): 1388-1397.
https://doi.org/10.3109/13880209.2014.893001
Saleem, S., Hasnain-Jameel, M., Akhtar, N., et al, 2021. Modification in structural, optical, morphological, and electrical properties of zinc oxide (ZnO) nanoparticles (NPs) by metal (Ni, Co) dopants for electronic device
applications. Arabian Journal of Chemistry, 15(1):103518. https://doi.org/10.1016/j.arabjc.2021.103518
Shamsudin, N.F., Ahmed, Q.U., Mahmood, S., et al, 2022. Antibacterial Effects of Flavonoids and Their Structure-Activity Relationship Study: A Comparative Interpretation. Molecules, 27(4): 1149-1191.
https://doi.org/10.3390/molecules27041149
Sharma, S., Kumar, K., Chauhan, S., et al, 2018. Synthesis and characterization of ZnO nanoparticles using mint plant leaves. CPUH-Research journal, 3(2): 1-4.
Sheldon, R.A., 2005. Green solvents for sustainable organic synthesis: state of the art. Green Chemistry. 7(5): 267-278.
https://doi.org/10.1039/B418069K
Siddiqi, K.S., Rahman, A., and Husen, A., 2018. Properties of Zinc Oxide Nanoparticles and Their Activity Against Microbes. Nanoscale Research Letters, 13(1): 1-13.
https://doi.org/10.1186/s11671-018-2532-3
Talam, S., Karummuri, S.R., and Gunnam, N., 2012. Synthesis, characterization and spectroscopic properties of ZnO nanoparticles. International Scholarly Research Network, 2012:1-6.
https://doi.org/10.5402/2012/372505
Uchenna, U.E., Shori, A.B., and Baba, A.S., 2018. Tamarindus indica seeds improve
carbohydrate and lipid metabolism: An in vivo study. Journal of Ayurveda and integrative medicine, 9(4): 258-265.
https://doi.org/10.1016/j.jaim.2017.06.004
Vadivel, V., Nandety, A., and Biesalski, H.K., 2011. Antioxidant, free radical scavenging and type II diabetes related enzyme inhibition properties of traditionally processed Jequirity bean (Abrus precatorius L.). International Journal of Food Science & Technology, 46(12): 2505-2512.
https://doi.org/10.1111/j.1365-2621.2011.02774.x
Varma, R.S., 2012. Greener approach to nanomaterials and their sustainable applications. Current Opinion in Chemical Engineering, 1(2): 123-128. https://doi.org/10.1016/j.coche.2011.12.002
Vivekananth, G.G., Poonkothai, M., and Alaguprathana, M. 2021. Sustainable root mediated synthesis of iron oxide nanoparticles from Glycyrrhiza glabra and its environmental applications. SPAST Abstracts, 1:(01).
Wayne, P.A., 2009. National Committee for Clinical Laboratory Standards, Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically, approved standard M7–A7, vol. 26 (Clinical and Laboratory Standards Institute).
Wong, C., Li, H., Cheng, K., et al, 2006. Systematic survey of antioxidant of 30 Chinese medicinal plants using the ferric reducing antioxidant power assay. Food Chemistry, 97: 705-711.
https://doi.org/10.1016/j.foodchem.2005.05.049
Xie, Y., He, Y., Irwin, P.L., et al, 2011. Antibacterial activity and mechanism of action
of zinc oxide nanoparticles against Campylobacter jejuni. Applied and environmental microbiology, 77(7): 2325–2331.
https://doi.org/10.1128/AEM.02149-10
Zak, A.K., Abrishami, M.E., Majid, W.A., et al, 2011. Effects of annealing temperature on some structural and optical properties of ZnO nanoparticles prepared by a modified sol–gel combustion method. Ceramics International, 37(1): 393–398.
https://doi.org/10.1016/j.ceramint.2010.08.017
DOI: https://doi.org/10.26789/AEB.2024.01.001
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 AbdulAziz Mohamed Gad et al.,
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.