Isolation, Screening, and Molecular Characterization of Rhizosphere Derived Potential Biofertilizer from Different Crops Land for Sustainable Agriculture and Environment
Abstract
Keywords
Full Text:
References
Aasfar, A., Bargaz, A., Yaakoubi, K., Hilali, A., Bennis, I., Zeroua, Y., Kadmiri, I.M., 2021. Nitrogen fixing Azotobacter species as potential soil biological enhancers for crop nutrition and yield stability. Frontiers in Microbiology, 12: 628379.
https://doi.org/10.3389/fmicb.2021.628379
Ahmadloo, F., Kochaksaraei, M.T., Azadi, P., Hamidi, A., Beiramizadeh, E., 2015. Effects of pectinase, BAP and dry storage on dormancy breaking and emergence rate of Crataegus pseudoheterophylla Pojark. New Forests, 46: 373-386.
https://doi.org/10.1007/s11056-014-9466-0
Aloo, B.N., Mbega, E.R, Makumba, B.A., Hertel, R., Daniel, R., 2021. Molecular identification and in vitro plant growth- promoting activities of culturable Potato (Solanum tuberosum L.) rhizobacteria in Tanzania. Potato Research, 64: 67-95.
https://doi.org/10.1007/s11540-020-09465-x
Anand, K.U., Kumari, B.A. and Mallick, M.A., 2016. Phosphate solubilizing microbes: an effective and alternative approach as biofertilizers. International Journal of Pharmacy and Pharmaceutical Sciences, 8(2): 37-40.
Ansari, R.A, Sumbul, A., Rizvi, R., Mahmood, I., 2019. Organic soil amendments: potential tool for soil and plant health management. Plant Health Under Biotic Stress: Organic Strategies, 1: 1-35.
https://doi.org/10.1007/978- 981-13-6043-5_1
Baars, O., Morel, F.M. and Zhang, X., 2018. The purple non‐sulfur bacterium Rhodopseudomonas palustris produces novel petrobactin‐related siderophores under aerobic and anaerobic conditions. Environmental microbiology. 20(5): 1667-76.
https://doi.org/10.1111/1462-2920.14078
Backer, R., Rokem, J.S., Ilangumaran, G., Lamont, J., Praslickova, D., Ricci, E., Subramanian, S., Smith, D.L., 2018. Plant growth-promoting rhizobacteria: context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Frontiers in plant science, 23(9): 1473.
https://doi.org/10.3389/fpls.2018.01473
Bansod, S. and Rai, M., 2008. Antifungal activity of essential oils from Indian medicinal plants against human pathogenic Aspergillus fumigatus and A. niger. World Journal of Medical Sciences, 3(2): 81-8.
Beck, E. and Ziegler, P., 1989. Biosynthesis and degradation of starch in higher plants. Annual review of plant biology, 40(1): 95-117.
https://doi.org/10.1146/annurev.pp.40.060189.000523
Bisht, N. and Chauhan, P.S., 2020. Excessive and disproportionate use of chemicals cause soil contamination and nutritional stress. Soil Contamination-Threats and Sustainable Solutions, 16: 1.
http://dx.doi.org/10.5772/intechopen.87652
Cendales, T.C., Rodríguez González, C.A., Villota Cuásquer, C.P., Tapasco Alzate, O.A., Rodríguez, A.H., 2017. Bacillus effect on the germination and growth of tomato seedlings (Solanum lycopersicum L). Acta Biológica Colombiana, 22(1): 37-44.
http://dx.doi.org/10.15446/abc.v22n1.57375
Choudhary, M., Jat, H.S., Datta, A., Yadav, A.K., Sapkota, T.B., Mondal, S., Meena, R.P., Sharma, P.C., Jat, M.L., 2018. Sustainable intensification influences soil quality, biota, and productivity in cereal-based agroecosystems. Applied Soil Ecology, 126: 189-198.
https://doi.org/10.1016/j.apsoil.2018.02.027
Dahal, R.H., Chaudhary, D.K. and Kim, J., 2017. Acinetobacter halotolerans sp. nov., a novel halotolerant, alkalitolerant, and hydrocarbon degrading bacterium, isolated from soil. Archives of microbiology, 199: 701-710.
https://doi.org/10.1007/s00203-017-1349-2
Di Benedetto, N.A., Campaniello, D., Bevilacqua, A., Cataldi, M.P., Sinigaglia, M., Flagella, Z., Corbo, M.R., 2019. Isolation, screening, and characterization of plant-growth-promoting bacteria from durum wheat rhizosphere to improve N and P nutrient use efficiency. Microorganisms, 7(11): 541.
https://doi.org/10.3390/microorganisms7110541
Dasgupta, S., Hossain, M. M., Huq, M., Wheeler, D., 2015. Climate change and soil salinity: The case of coastal Bangladesh. Ambio, 44: 815-826.
https://doi.org/10.1007/s13280-015-0681-5
Efe, D., 2020. Potential plant growth-promoting bacteria with heavy metal resistance. Current Microbiology. 77(12): 3861-8.
https://doi.org/10.1007/s00284-020-02208-8
Fahad, S., Chavan, S.B., Chichaghare, A.R., Uthappa, A.R., Kumar, M., Kakade, V., Pradhan, A., Jinger, D., Rawale, G., Yadav, D.K., Kumar, V., Farooq, T.H., Ali, B., Sawant, A.V., Saud, S., Chen, S., Poczai, P., 2022. Agroforestry Systems for Soil Health Improvement and Maintenance. Sustainability, 14(22): 14877.
https://doi.org/10.3390/su142214877
Ferreira, C., 2019. Vox como representante de la derecha radical en España: un estudio sobre su ideología. Revista Española de Ciencia Política, 51(51): 73-98.
https://doi.org/10.21308/recp.51.03
Freitas, A., Kaiser, S., Chandler, D.J., Hall, D.C., Kim, J.-W., Hammidi, T., 1997. Appearance Management as Border Construction: Least Favorite Clothing, Group Distancing, and Identity Not! Sociological inquiry, 67(3): 323-335.
https://doi.org/10.1111/j.1475-682X.1997.tb01099.x
Galambos, N., Compant, S., Moretto, M., Sicher, C., Puopolo, G., Wäckers, F., Sessitsch, A., Pertot, I., Perazzolli, M., 2020. Humic acid enhances the growth of tomato promoted by endophytic bacterial strains through the activation of hormone-, growth-, and transcription-related processes. Frontiers in Plant Science, 11: 582267.
https://doi.org/10.3389/fpls.2020.582267
Godfray, H.C.J., Beddington, J.R., Crute, I.R., Haddad, L., Lawrence, D., Muir, J.F., Pretty, J., Robinson, S., Thomas, S.M., Toulmin, C., 2010. Food security: the challenge of feeding 9 billion people. Science, 327(5967): 812-818.
https://doi.org/10.1126/science.1185383
Halenárová, E., Medo, J., Kovácsová, S., Charousová, I., Maková, J., Elbl, J., Záhora, J., Javoreková, S., 2016. Effect of vermicompost on changes in the bacterial community in maize rhizosphere. Journal of Central European Agriculture, 17(4): 1033-1049.
http://dx.doi.org/10.5513/JCEA01/17.4.1808
Hirsch, P.R. and Mauchline, T.H. 2012. Who's who in the plant root microbiome? Nature biotechnology, 30(10): 961-962.
https://doi.org/10.1038/nbt.2387
Hofmann T., Lowry G.V., Ghoshal S., Tufenkji, N., Brambilla, D., Dutcher, J.R., Gilbertson, L.M., Giraldo, J.P., Kinsella, J.M., Landry, M.P., Lovell, W., Naccache, R., Paret, M., Pedersen, J.A., Unrine, J.M., White, J.C., Wilkinson, K.J., 2020. Technology readiness and overcoming barriers to sustainably implement nanotechnology-enabled plant agriculture. Nature Food, 1(7): 416-425.
https://doi.org/10.1038/s43016-020-0110-1
Hu, Q.-P., and Xu, J.-G., 2011. A simple double-layered chrome azurol S agar (SD-CASA) plate assay to optimize the production of siderophores by a potential biocontrol agent Bacillus. African Journal of Microbiology Research, 5(25): 4321-4327.
https://doi.org/10.5897/AJMR11.238
Ibal, J.C., Pham, H.Q., Park, C.E., Shin, J.-H., 2019. Information about variations in multiple copies of bacterial 16S rRNA genes may aid in species identification. PLoS One, 14(2): e0212090.
https://doi.org/10.1371/journal.pone.0212090
Ibarra-Galeana, J.A., Castro-Martínez, C., Fierro-Coronado, R.A., Armenta-Bojórquez, A.D., Maldonado-Mendoza, I.E., 2017. Characterization of phosphate-solubilizing bacteria exhibiting the potential for growth promotion and phosphorus nutrition improvement in maize (Zea mays L.) in calcareous soils of Sinaloa, Mexico. Annals of Microbiology, 67: 801-811.
https://doi.org/10.1007/s13213-017-1308-9
Jha, V., Kumari, N., Prasad, B., Ranjan, T., 2019. Ethanol production by Aspergillus niger US4MTCC9931 and Saccharomyces cerevisiae MTCC174 using different lignocellulosic biomass feed stocks. BioResources, 14(4): 8753-8764.
Joseph, B., Patra, R. and Lawrence, R., 2007. Characterization of plant growth promoting rhizobacteria associated with chickpea (Cicer arietinum L.). International Journal of Plant Production, 1(2): 141-152.
Kalayu, G., 2019. Phosphate solubilizing microorganisms: promising approach as biofertilizers. International Journal of Agronomy, 2019: 1-7.
https://doi.org/10.1155/2019/4917256
Kaur, C., Selvakumar, G. and Ganeshamurthy, A.N., 2017. Burkholderia to Paraburkholderia: the journey of a plant-beneficial-environmental bacterium. Recent advances in applied microbiology, 2017: 213-228.
https://doi.org/10.1007/978-981-10-5275-0_10
Kumar, S., Soukup, M. and Elbaum, R., 2017. Silicification in grasses: variation between different cell types. Frontiers in Plant Science, 8: 438.
https://doi.org/10.3389/fpls.2017.00438
Lazarovits, G., 2001. Management of soil-borne plant pathogens with organic soil amendments: a disease control strategy salvaged from the past. Canadian Journal of Plant Patholog, 23(1): 1-7.
https://doi.org/10.1080/07060660109506901
Leinhos, V. and Vacek, O., 1994. Biosynthesis of auxins by phosphate-solubilizing rhizobacteria from wheat (Triticum aestivum and rye (Secale cereale). Microbiological Research, 149(1): 31-35.
https://doi.org/10.1016/S0944-5013(11)80132-1
Lin, M., Fiore, A.M., Cooper, O.R., Horowitz, L.W., Langford, A.O., Levy, H., Johnson, B.J., Naik, V., Oltmans, S.J., Senff, C.J., 2012. Springtime high surface ozone events over the western United States: Quantifying the role of stratospheric intrusions. Journal of Geophysical Research: Atmospheres, 117(D21).
https://doi.org/10.1029/2012JD018151
Lin, W., Lin, M., Zhou, H., Wu, H., Li, Z., Lin, W., 2019. The effects of chemical and organic fertilizer usage on rhizosphere soil in tea orchards. PloS one, 14(5): e0217018.
https://doi.org/10.1371/journal.pone.0217018
López-López, A., Rogel, M.A., Ormeno-Orrillo, E., Martínez-Romero, J., Martínez-Romero, E., 2010. Phaseolus vulgari seed-borne endophytic community with novel bacterial species such as Rhizobium endophyticum sp. Systematic and Applied Microbiology, 33(6): 322-327.
https://doi.org/10.1016/j.syapm.2010.07.005
Lucy, M., Reed, E. and Glick, B.R., 2004. Applications of free living plant growth-promoting rhizobacteria. Antonie van leeuwenhoek, 86: 1-25.
https://doi.org/10.1023/B:ANTO.0000024903.10757.6e
Lugtenberg, B.J., Chin-A-Woeng, T.F. and Bloemberg, G.V., 2002. Microbe–plant interactions: principles and mechanisms. Antonie Van Leeuwenhoek, 81: 373-383.
https://doi.org/10.1023/A:1020596903142
Meena, S.K., Rakshit, A., Singh, H.B., Meena, V.S., 2017. Effect of nitrogen levels and seed bio-priming on root infection, growth and yield attributes of wheat in varied soil type. Biocatalysis and Agricultural Biotechnology, 12: 172-178.
https://doi.org/10.1016/j.bcab.2017.10.006
Mehta, P.K. and Monteiro, P.J., 2014. Concrete: microstructure, properties, and materials. McGraw-Hill Education
Meyer, T., Renoud, S., Vigouroux, A., Miomandre, A., Gaillard, V., Kerzaon, I., Prigent-Combaret, C., Comte, G., Moréra, S., Vial, L., Lavire, C., 2018. Regulation of hydroxycinnamic acid degradation drives Agrobacterium fabru lifestyles. Molecular Plant-Microbe Interactions, 31(8): 814-822.
https://doi.org/10.1094/MPMI-10-17-0236-R
Mulla, S.I., Bharagava, R.N., Belhaj, D., Saratale, G.D., Bagewadi, Z.K., Saxena, G., Kumar, A., Mohan, H., Yu, C.-P., Ninnekar, H.Z., 2019. An overview of nitro group-containing compounds and herbicides degradation in microorganisms. Microbial Metabolism of Xenobiotic Compounds, 319-35.
https://doi.org/10.1007/978-981-13-7462-3_16
Omeiri, M., Khnayzer, R., Yusef, H., Tokajian, S., Salloum, T., Mokh, S., 2022. Bacillus spp. isolated from soil in Lebanon can simultaneously degrade methomyl in contaminated soils and enhance plant growth. Biocatalysis and Agricultural Biotechnology, 39: 102280.
https://doi.org/10.1016/j.bcab.2022.102280
Oo, K.T., Win, T.T., Khai, A.A., Fu, P., 2020. Isolation, screening and molecular characterization of multifunctional plant growth promoting rhizobacteria for a sustainable agriculture. American Journal of Plant Sciences, 11(6): 773-792.
https://doi.org/10.4236/ajps.2020.116055
Ouyabe, M., Irie, K., Tanaka, N., Kikuno, H., Pachakki, B., Shiwachi, H., 2020. Response of upland rice (Oryza sativa L.) inoculated with non-native plant growth-promoting bacteria. Agronomy, 10(6): 903.
https://doi.org/10.3390/agronomy10060903
Pieterse, C.M., Zamioudis, C., Berendsen, R.L., Weller, D.M., Van Wees, S.C.M., Bakker, P.A.H.M., 2014. Induced systemic resistance by beneficial microbes. Annual review of phytopathology, 52: 347-375.
https://doi.org/10.1146/annurev-phyto-082712-102340
Pii, Y., Mimmo, T., Tomasi, N., Terzano, R., Cesco, S., Crecchio, C., 2015. Microbial interactions in the rhizosphere: beneficial influences of plant growth-promoting rhizobacteria on nutrient acquisition process. A review. Biology and fertility of soils, 51: 403-415.
https://doi.org/10.1007/s00374-015-0996-1
Prabhu, N., Borkar, S. and Garg, S., 2019. Phosphate solubilization by microorganisms: overview, mechanisms, applications and advances. Advances in biological science research, 161-176.
https://doi.org/10.1016/B978-0-12-817497-5.00011-2
Razmi, Z., Hamidi, R. and Pirasteh-Anosheh, H., 2013. Seed germination and seedling growth of three sorghum (Sorghum bicolor L.) genotypes as affected by low temperatures. International Journal of Farming and Allied Sciences, 20: 851-856.
Richardson, A.E., 2001. Prospects for using soil microorganisms to improve the acquisition of phosphorus by plants. Functional Plant Biolog, 28(9): 897-906.
https://doi.org/10.1071/PP01093
Rios-Ruiz, W.F., Tuanama-Reátegui, C., Huamán-Córdova, G., Valdez-Nuñez, R.A., 2023. Co-Inoculation of Endophytes Bacillus siamensis TUR07-02b and Priestia megaterium SMBH14-02 Promotes Growth in Rice with Low Doses of Nitrogen Fertilizer. Plants, 12(3): 524.
https://doi.org/10.3390/plants12030524
Rodrigues-dos Santos, A.S., Rebelo-Romão I., Zhang H., Vílchez, J.I., 2022. Discerning Transcriptomic and Biochemical Responses of Arabidopsis thaliana Treated with the Biofertilizer Strain Priestia megaterium YC4-R4: Boosting Plant Central and Secondary Metabolism. Plants, 11(22): 3039.
https://doi.org/10.3390/plants11223039
Rossmann, B., Müller, H., Smalla, K., Mpiira, S., Tumuhairwe, J.B., Staver, C., Berg, G., 2012. Banana-associated microbial communities in Uganda are highly diverse but dominated by Enterobacteriaceae. Applied and environmental microbiology, 78(14): 4933-4941.
https://doi.org/10.1128/AEM.00772-12
Saad, M.M., Kandil, M. and Mohammed, Y.M., 2020. Isolation and identification of plant growth-promoting bacteria highly effective in suppressing root rot in fava beans. Current Microbiology, 77: 2155-2165.
https://doi.org/10.1007/s00284-020-02015-1
Sagar, A., Yadav, S.S., Sayyed, R.Z., Sharma, S., Ramteke, P.W., 2022. Bacillus subtilis: a multifarious plant growth promoter, biocontrol agent, and bioalleviator of abiotic stress. Bacilli in Agrobiotechnology: Plant Stress Tolerance, Bioremediation, and Bioprospecting, 561-580.
https://doi.org/10.1007/978-3-030-85465-2_24
Singh, V.K., Singh, A.K., Singh, P.P., Kumar, A., 2018. Interaction of plant growth promoting bacteria with tomato under abiotic stress: a review. Agriculture, Ecosystems & Environment, 267: 129-140.
https://doi.org/10.1016/j.agee.2018.08.020
Soares, E.V., 2022. Perspective on the biotechnological production of bacterial siderophores and their use. Applied Microbiology and Biotechnology, 106(11): 3985-4004.
https://doi.org/10.1007/s00253-022-11995-y
Soumare, A., Diedhiou, A.G., Thuita, M., Hafidi, M., Ouhdouch, Y., Gopalakrishnan, S., Kouisni, L., 2020. Exploiting biological nitrogen fixation: a route towards a sustainable agriculture. Plants, 9(8): 1011.
https://doi.org/10.3390/plants9081011
Stassinos, P.M., Rossi, M., Borromeo, I., Capo, C., Beninati, S., Forni, C., 2022. Amelioration of salt stress tolerance in rapeseed (Brassica napus) cultivars by seed inoculation with Arthrobacter globiformis. Plant Biosystems-An International Journal Dealing with all Aspects of Plant Biology, 156(2): 370-383.
https://doi.org/10.1080/11263504.2020.1857872
Tan, Y., Du, C., Xu, L., Yue, C., Liu, X., Fan, H., 2022. Endophytic bacteria from diseased plant leaves as potential biocontrol agents of cucumber Fusarium wilt. Research Square, 23 November 2022, Preprint (Version 1).
https://doi.org/10.21203/rs.3.rs-2290076/v1
Thilakarathna, M.S., McElroy, M.S., Chapagain, T., Papadopoulos, Y.A., Raizada, M.N., 2016. Belowground nitrogen transfer from legumes to non-legumes under managed herbaceous cropping systems. A review. Agronomy for Sustainable Development, 36: 1-6.
https://doi.org/10.1007/s13593-016-0396-4
Tsavkelova, E.A., Cherdyntseva, T.A., Botina, S.G., 2007. Bacteria associated with orchid roots and microbial production of auxin. Microbiological research, 162(1): 69-76.
Velázquez, E., Carro, L., Flores-Félix, J.D., Menéndez, E., Peix, A., 2019. Bacteria-inducing legume nodules involved in the improvement of plant growth, health and nutrition. Microbiome in Plant Health and Disease: Challenges and Opportunities, 79-104.
https://doi.org/10.1007/978-981-13-8495-0_4
Vindeirinho, J.M., Soares, H.M. and Soares, E.V., 2021. Modulation of siderophore production by Pseudomonas fluorescens through the manipulation of the culture medium composition. Applied Biochemistry and Biotechnology, 193: 607-618.
https://doi.org/10.1007/s12010-020-03349-z
Vio, S.A., García, S.S., Casajus, V., Arango, J.S., Galar, M.L., Bernabeu, P.R., Luna, M.F., 2020. Paraburkholderia. Beneficial Microbes in Agro-Ecology, 2022: 271-311.
https://doi.org/10.1016/B978-0-12-823414-3.00015-0
Wijayaratih, Y., Radjagukguk, B., Martani, E., Prijambodo, I.D., 2008. Karakteristik Konsorsium Bakteri Perombak Dibenzofuran Dari Sedimen Mangrove (Dibenzofuran-degrading Bacterial Consortium Characteristics From Mangrove Sediments). Jurnal Manusia dan Lingkungan, 15(2): 59-69.
Xu, Y., Zheng, C., Liang, L., Yi, Z., Xue, S., 2021. Quantitative assessment of the potential for soil improvement by planting Miscanthus on saline‐alkaline soil and the underlying microbial mechanism. GCB Bioenergy, 13(7): 1191-1205.
https://doi.org/10.1111/gcbb.12845
Yu, Y., Zhang, Q., Zhang, Z., Zhou, S., Jin, M., Zhu, D., Yang, X., Qian, H., Lu, T., 2023. Plants select antibiotic resistome in rhizosphere in early stage. Science of the Total Environment, 858: 159847.
https://doi.org/10.1016/j.scitotenv.2022.159847
Zahid, M., Abbasi, M.K., Hameed, S., Rahim, N., 2015. Isolation and identification of indigenous plant growth promoting rhizobacteria from Himalayan region of Kashmir and their effect on improving growth and nutrient contents of maize (Zea mays L.). Frontiers in microbiology, 6: 207.
https://doi.org/10.3389/fmicb.2015.00207
Zhang, S., Fan, C., Wang, Y., Xia, Y., Xiao, W., Cui, X., 2018. Salt-tolerant and plant-growth-promoting bacteria isolated from high-yield paddy soil. Canadian journal of microbiology, 64(12): 968-978.
https://doi.org/10.1139/cjm-2017-0571
DOI: https://doi.org/10.26789/AEB.2023.02.004
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Md. Rezaul Karim et al
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.