Biotoxicity of NH4+ on Nostoc Sphaeroides (diazotrophic cyanobacteria) in paddy floodwater
Abstract
Keywords
Full Text:
References
Abinandan, S., Subashchandrabose, S.R., Venkateswarlu, K., Megharaj M., 2019. Soil microalgae and cyanobacteria: the biotechnological potential in the maintenance of soil fertility and health. Critical reviews in biotechnology, 39 (8): 981-998.
https://doi.org/10.1080/07388551.2019.1654972
Akoijam, C., Langpoklakpam, J.S., Chettri, B., Singh, A.K., 2015. Cyanobacterial diversity in hydrocarbon-polluted sediments and their possible role in bioremediation. International Biodeterioration & Biodegradation, 103: 97-104.
https://doi.org/10.1016/j.ibiod.2015.03.035
Chen, P., Xu, J., Zhang, Z., Nie, T., 2022. 'Preferential' ammonium uptake by rice does not always turn into higher N recovery of fertilizer sources under water-saving irrigation. Agricultural Water Management, 272: 107867.
https://doi.org/10.1016/j.agwat.2022.107867
Christen, D., Schönmann, S., Jermini, M., Strasser, R.J., Défago, G., 2007. Characterization and early detection of grapevine (Vitis vinifera) stress responses to esca disease by in situ chlorophyll fluorescence and comparison with drought stress. Environmental and Experimental Botany, 60(3): 504-514.
https://doi.org/10.1016/j.envexpbot.2007.02.003
Dagnino-Leone, J., Figueroa, C.P., Castañeda, M.L., Youlton, A.D., Vallejos-Almirall, A., Agurto-Muñoz, A., Pérez, J.P., Agurto-Muñoz, C., 2022. Phycobiliproteins: Structural aspects, functional characteristics, and biotechnological perspectives. Computational and Structural Biotechnology Journal, 20: 1506-1527.
https://doi.org/10.1016/j.csbj.2022.02.016
Dai, G., Deblois, C.P., Liu, S., Juneau, P., Qiu, B., 2008. Differential sensitivity of five cyanobacterial strains to ammonium toxicity and its inhibitory mechanism on the photosynthesis of rice-field cyanobacterium Ge-Xian-Mi (Nostoc). Aquatic Toxicology, 89 (2): 113-121.
https://doi.org/10.1016/j.aquatox.2008.06.007
Dekaezemacker, J. and Bonnet, S., 2011. Sensitivity of N2 fixation to combined nitrogen forms (NO3− and NH4+) in two strains of the marine diazotroph Crocosphaera watsonii (Cyanobacteria). Marine Ecology Progress Series, 438: 33-46.
https://doi.org/10.3354/meps09297
Del Rio, D., Stewart, A.J., Pellegrini, N., 2005. A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutrition, metabolism and cardiovascular diseases, 15(4): 316-328.
https://doi.org/10.1016/j.numecd.2005.05.003
Drath, M., Kloft, N., Batschauer, A., Marin, K., Novak, J., Forchhammer, K., 2008. Ammonia triggers photodamage of photosystem II in the cyanobacterium Synechocystis sp. strain PCC 6803. Plant physiology, 147(1): 206–215.
https://doi.org/10.1104/pp.108.117218
Evans, M.C., Ball, R.J., Nugent, J.H., 2005. Ammonia displaces methanol bound to the water oxidizing complex of photosystem II in the S2 state. FEBS letters, 579(14): 3081-3084.
https://doi.org/10.1016/j.febslet.2005.04.066
Feng, Y., 2023. Evaluation of biotoxicity of NH4+ on paddy diazotrophic cyanobacteria GE-XIAN-MI (Nostoc Sphaeroides) based on statistical analyses using SPSS. Model World, 4: 163-165.
Gheda, S.F. and Ahmed, D.A., 2015. Improved soil characteristics and wheat germination as influenced by inoculation of Nostoc kihlmani and Anabaena cylindrica. Rendiconti Lincei, 26: 121-131.
https://doi.org/10.1007/s12210-014-0351-8
Glazer, A.N., 1984. Phycobilisome a macromolecular complex optimized for light energy transfer. Biochimica et Biophysica Acta (BBA)-Reviews on Bioenergetics, 768(1): 29-51.
https://doi.org/10.1016/0304-4173(84)90006-5
Guo, J.H., Liu, X.J., Zhang, Y., Shen, J.L., Han, W.X., Zhang, W.F., Christie, P., Goulding, K.W.T., Vitousek, P.M., Zhang, F.S., 2010. Significant acidification in major Chinese croplands. Science, 327(5968): 1008-1010.
https://doi.org/10.1126/science.1182570
Hong, Y., Hu, H. Y., Li, F.M., 2008. Physiological and biochemical effects of allelochemical ethyl 2-methyl acetoacetate (EMA) on cyanobacterium Microcystis aeruginosa. Ecotoxicology and environmental safety, 71(2): 527-534.
https://doi.org/10.1016/j.ecoenv.2007.10.010
Hu, T., Chen, A., Jiang, Y., Sun, C., Sun, C., Luo, S., Shao, J., 2022. Application of a newly recorded diazotrophic cyanobacterium in acidified and Cd contaminated paddy soil: Promotes rice yield and decreases Cd accumulation. Science of The Total Environment, 814: 152630.
https://doi.org/10.1016/j.scitotenv.2021.152630
Jadhav, S.B., Phugare, S.S., Patil, P.S., Jadhav, J.P., 2011. Biochemical degradation pathway of textile dye remazol red and subsequent toxicological evaluation by cytotoxicity, genotoxicity and oxidative stress studies. International Biodeterioration & Biodegradation, 65(6): 733-743.
https://doi.org/10.1016/j.ibiod.2011.04.003
Jiang, Y., Hu, T., Peng, O., Chen, A., Tie, B., Shao, J., 2022. Impact of heavy metal passivators on the nitrogenase activity and diazotrophic community in a cadmium-contaminated paddy field. International Biodeterioration & Biodegradation, 175: 105506.
https://doi.org/10.1016/j.ibiod.2022.105506
Jiang, Y., Hu, T., Peng, O., Chen, A., Tie, B., Shao, J., 2021. Responses of microbial community and soil enzyme to heavy metal passivators in cadmium contaminated paddy soils: An in situ field experiment. International Biodeterioration & Biodegradation, 164: 105292.
https://doi.org/10.1016/j.ibiod.2021.105292
Källqvist, T. and Svenson, A., 2003. Assessment of ammonia toxicity in tests with the microalga, Nephroselmis pyriformis, Chlorophyta. Water Research, 37: 477-484
Kater, B.J., Dubbeldam, M., Postma, J.F., 2006. Ammonium toxicity at high pH in a marine bioassay using Corophium volutator. Archives of environmental contamination and toxicology, 51(3): 347–351.
https://doi.org/10.1007/s00244-005-0163-z
Khorobrykh, S., Havurinne, V., Mattila, H., Tyystjärvi, E., 2020. Oxygen and ROS in Photosynthesis. Plants (Basel, Switzerland), 9(1): 91.
https://doi.org/10.3390/plants9010091
Lin, Y., Chen, A., He, Y., Qing, C., Peng, L., Luo, S., Shao, J., 2019. Responses of Microcystis aeruginosa (Cyanobacteria) to sanguinarine stress: morphological and physiological characteristics associated with competitive advantage. Phycologia, 58(3): 260-268.
https://doi.org/10.1080/00318884.2018.1561966
Lin, Y., Chen, A., Wu, G., Peng, L., Xu, Z., Shao, J., 2017. Growth, microcystins synthesis, and cell viability of Microcystis aeruginosa FACHB905 to dissolved organic matter originated from cattle manure. International Biodeterioration & Biodegradation, 118: 126-133.
https://doi.org/10.1016/j.ibiod.2017.01.031
Liu, D., Ma, J., Cheng, M., Wu, N., Xue, L., Zhao, C., 2020. Study on the effect of CO2 leakage on the basic water quality index of paddy field water. Acta Scientiae Circumstantiae, 40: 1298-1308.
https://doi.org/10.13671/j.hjkxxb.2019.0484
Lü, Y., Zheng, M., Wu, J., Wu, P., Lao, J., Fu, W., 2022. Effects of different nitrogen reduction fertilizer combined with milk vetch (Astragalus sinicus L.) on the loss of nitrogen and phosphorus in field water and rice growth. Journal of Soil and Water Conservation, 36: 148-155.
https://doi.org/10.13870/j.cnki.stbcxb.2022.06.019
Moisander, P.H., Daley, M.C., Shoemaker, K.M., Kolte, V., Sharma, G., Garlick, K., 2022. Nitrogen fixation influenced by phosphorus and nitrogen availability in the benthic bloom-forming cyanobacterium Hydrocoleum sp. identified in a temperate marine lagoon. Journal of Phycology, 2022, 58(3): 377-391.
https://doi.org/10.1111/jpy.13244
Moustakas, M., 2022. Plant photochemistry, reactive oxygen species, and photoprotection. Photochemistry, 2: 5-8.
https://doi.org/10.3390/photochem2010002
Qin, H., Lu, J., Wang, Z., Li, D., 2013. The influence of soil and water physicochemical properties on the distribution of nostoc sphaeroides (cyanophyceae) in paddy fields and biochemical comparison with indoor cultured biomass. Journal of Applied Phycology, 25: 1737-1745.
https://doi.org/10.1007/s10811-013-0040-5
Qing, C., Zhang, H., Chen, A., Lin, Y., Shao, J., 2020. Effects and possible mechanisms of sanguinarine on the competition between Raphidiopsis raciborskii (Cyanophyta) and Scenedesmus obliquus (Chlorophyta): A comparative toxicological study. Ecotoxicology and Environmental Safety, 206: 111192.
https://doi.org/10.1016/j.ecoenv.2020.111192
Shao, J., Yan, Q., Sun, C., Sun, C., Feng, Y., Miao, K., Wang, S., 2021. Cattle manure DOM on adsorption of copper by the cyanobacterium Aliinostoc species. Applied Environmental Biotechnology, 6(2): 13-18.
https://doi.org/10.26789/AEB.2021.02.002
Sharma, V., Prasanna, R., Hossain, F., Muthusamy, V., Nain, L., Das, S., Shivay, Y.S., Kumar, A., 2020. Priming maize seeds with cyanobacteria enhances seed vigour and plant growth in elite maize inbreds. Biotechnology, 10(4): 154.
https://doi.org/10.1007/s13205-020-2141-6
Shrestha, J., Karki, T.B., Hossain, M.A., 2022. Application of nitrogenous fertilizer in rice production: A review. Journal of Nepal Agricultural Research Council, 8: 16-26.
https://doi.org/10.3126/jnarc.v8i.44815
Sies, H., Belousov, V.V., Chandel, N.S. Davies, M.J., Jones, D.P., Mann, G.E., Murphy, M.P., Yamamoto, M., Winterbourn, C.., 2022. Defining roles of specific reactive oxygen species (ROS) in cell biology and physiology. Nature Reviews Molecular Cell Biology, 23: 499-515.
https://doi.org/10.1038/s41580-022-00456-z
Subramanian, G., Sekar, S., Sampoornam, S., 1994. Biodegradation and utilization of organophosphorus pesticides by cyanobacteria. International biodeterioration & biodegradation, 33(2): 129-143.
https://doi.org/10.1016/0964-8305(94)90032-9
Yan, Q., Xiao, P., Li, J., He, Y., Shao, J., 2022. Physiological responses of a diazotrophic cyanobacterium to acidification of paddy floodwater: N2 fixation, Photosynthesis, and Oxidative–Antioxidative Characteristics. International Journal of Environmental Research and Public Health, 19(22): 15070.
https://doi.org/10.3390/ijerph192215070
Yan, X., Zhao, F., Wang, G., Wang, Z., Zhou, M., Zhang, L., Wang, G., Chen, Y., 2023. Metabolomic analysis of Microcystis aeruginosa after exposure to the algicide L-lysine. Bulletin of Environmental Contamination and Toxicology, 110(1): 1-7.
https://doi.org/10.1007/s00128-022-03658-5
Yu, X., Yang, L., Feng, Y., 2020. Comparative response of SOD in different plants against cadmium and drought stress at the molecular level. Applied Environmental Biotechnology, 5(1): 15-28.
https://doi.org/10.26789/AEB.2020.01.003
Zagorchev, L., Atanasova, A., Albanova, I., Traianova, A., Mladenov, P., Kouzmanova, M., Goltsev, V., Kalaji, H.M., Teofanova, D., 2021. Functional characterization of the photosynthetic machinery in Smicronix galls on the parasitic plant Cuscuta campestris by JIP-Test. Cells, 10(6): 1399.
https://doi.org/10.3390/cells10061399
Zhu, Q., Liu, X., Hao, T., Zeng, M., Shen, J., Zhang, F., Vries, W., 2020. Cropland acidification increases risk of yield losses and food insecurity in China. Environmental pollution, 256: 113145.
https://doi.org/10.1016/j.envpol.2019.113145
DOI: https://doi.org/10.26789/AEB.2023.01.005
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Jihai Shao, Li Fan, Ye Feng

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.