Isolation and selection of salt-tolerant bacterial strains capable of solubilizing phosphorus and synthesizing phosphatase enzyme from rice-shrimp soil in Mekong River Delta, Vietnam
Abstract
Keywords
Full Text:
References
Abdallah, A.A., Magboul, P. and McSweeney, L.H., 1999a. Purification and characterization of an acid phosphatase from Lactobacillus plantarum DPC2739. Food Chemistry, 65: 15-22.
https://doi.org/10.1016/S0308-8146(98)00255-6
Abdallah, A.A., Magboul, P. and McSweeney, L.H., 1999b. Purification and properties of an acid phosphatase from Lactobacillus curvatus DPC2024. International Dairy Journal, 9: 849-885.
https://doi.org/10.1016/S0958-6946(00)00010-8
Akuzawa, R. and Fox, P.F., 1998. Purification and characterization of an acid phosphatase from cell membrane fraction of Lactococcus lactis ssp lactis 303. Food Research International, 31: 157-165.
https://doi.org/10.1016/S0963-9969(98)00077-5
Aqel, H., 2012. Effects of pH-values, temperatures, sodium chloride, metal Ions, sugars and tweens on the acid phosphatase activity by Thermophilic Bacillus Strains. European Journal of Scientific Research, 75 (2): 262-268.
Azziz, G., Bajsa, N., Haghjou, T., Taulé, C., Valverde, Á., Igual, J.M., Arias, A., 2012. Abundance, diversity and prospecting of culturable phosphate solubilizing bacteria on soils under crop-pasture rotations in a no-tillage regime in Uruguay. Applied Soil Ecology, 61: 320-326.
https://doi.org/10.1016/j.apsoil.2011.10.004
Behera, B.C., Yadav, B.H, Singh, C.K., Mishra, R.R., Sethi, B.K., Dutta, S.K., Thatoi, H.N., 2017. Phosphate solubilization and acid phosphatase activity of Serratia sp. isolated from mangrove soil of Mahanadi river delta, Odisha, India. Journal of Genetic Engineering and Biotechnology, 15: 169-178.
https://doi.org/10.1016/j.jgeb.2017.01.003
Brady, C.N. and Weil, R.R., 2008, The Nature and Properties of Soils, 14th. Ed, Pearson Prentice Hall, New Jersey 2008, 975.
Bylund, J.E., Dyer, J.K., Feely, D.E., Martin, E.L., 1990. Alkaline and acid phosphatase from the extensively halotolerant bacterium Halomonas elongate. Current Microbiology, 20: 125-131.
https://doi.org/10.1007/BF02092885
Campbell, L.B. and Racz, G.J., 1975. Organic and inorganic P content, movement and mineralization of P in soil beneath a feedlot. Canadian Journal of Soil Science, 55457-466.
https://doi.org/10.4141/cjss75-052
Carstensen, A., Herdean, A., Schmidt, S.B., Sharma, A., Spetea, C., Pribil, M., Husted, S., 2018. The impacts of phosphorus deficiency on the photosynthetic electron transport chain. Plant Physiology, 177: 271-284.
https://doi.org/10.1104/pp.17.01624
Clarholm, M., Skyllberg, U. and Rosling, A., 2015. Organic acid induced release of nutrients from metal-stabilized soil organic matter-The unbutton model. Soil Biology and Biochemistry, 84: 168-176.
https://doi.org/10.1016/j.soilbio.2015.02.019
Condron, L.M., Turner, B.L., Cade-Menun, B.J., Sims, J.T., Sharpley, A.N., 2005. Chemistry and dynamics of soil organic phosphorus. Phosphorus: Agriculture and the environment, 46: 87-121.
https://doi.org/10.2134/agronmonogr46.c4
Darch, T., Blackwell, M.S.A., Chadwick, D., Haygarth, P.M., Hawkins, J.M.B., Turner, B.L., 2016. Assessment of bioavailable organic phosphorus in tropical forest soils by organic acid extraction and phosphatase hydrolysis. Geoderma, 284: 93-102.
https://doi.org/10.1016/j.geoderma.2016.08.018
Elena, P., Mikhail, V., Vasilii, I., 1999. Characterization of Bacillus strains of marine origin. International Microbiology, 2: 267-269.
Giles, C.D., Richardson, A.E., Cade-Menun, B.J., Mezeli, M.M., Brown, L.K., Menezes-Blackburn, D., Darch, T., Blackwell, M.S.A., Shand, C.A., Stutter, M.I., Wendler, R., Cooper, P., Lumsdon, D.G., Wearing, C., Zhang, H., Haygarth, P.M., George, T.S., 2018. Phosphorus acquisition by citrate- and phytase-exuding Nicotiana tabacum plant mixtures depends on soil phosphorus availability and root intermingling. Physiologia Plantarum, 163: 356-371.
https://doi.org/10.1111/ppl.12718
Gomes, J., and Steiner, W., 2004.The biocatalytic potential of extromophiles and extremozymes. Food Technology and Biotechnology, 4: 223-235.
Suleimanova, A.D., Beinhauer, A., Valeeva, L.R., Chastukhina, I.B., Balaban, N.P., Shakirov, E.V., Greiner, R., Sharipova, M.R., 2015. Novel glucose-1-phosphatase with high phytase activity and unusual metal ion activation from Soil Bacterium Pantoea sp. strain 3.5.1. Applied and Environmental Microbiology, 81(19): 6790-9.
https://doi.org/10.1128/AEM.01384-15
Kosová, K., Prášil, I.T. and Vítámvás, P., 2013. Protein contribution to plant salinity response and tolerance acquisition. International Journal of Molecular Sciences, 14: 6757-6789.
https://doi.org/10.3390/ijms14046757
Krishnaraj, P.U. and Dahale, S., 2014. Mineral phosphate solubilization: concepts and prospects in sustainable agriculture. Proceedings of the Indian National Science Academy, 80(2): 389-405.
https://doi.org/10.16943/ptinsa/2014/v80i2/55116
Kumar, A., Kumar, A. and Patel, H., 2018. Role of microbes in phosphorus availability and acquisition by plants. International Journal of Current Microbiology and Applied Sciences, 7(5): 1344-1347.
https://doi.org/10.20546/ijcmas.2018.705.161
Lin, Q.M., Wang, H., Zhao, X.R., Zhao Z.J., 2001, The solubilizing ability of some bacteria and fungi and its mechanisms. Microbiology (China), 28: 26-30.
Mehta, S., and Nautiyal, C.S., 2001. An Efficient Method for Qualitative Screening of Phosphate Solubilizing Bacteria. Current Microbiology, 43: 51-56.
https://doi.org/10.1007/s002840010259
Mokrani, S., Nabti, E.H. and Cruz, C., 2020. Current Advances in Plant Growth Promoting Bacteria Alleviating Salt Stress for Sustainable Agriculture. Applied Sciences, 10: 7025.
https://doi.org/10.3390/app10207025
Muindi, E.M., 2019. Understanding Soil Phosphorus. International Journal of Plant & Soil Science, 31(2):1-18.
https://doi.org/10.9734/ijpss/2019/v31i230208
Nascimento, W.C.A.D. and Martins, M.L.L., 2004. Production and properties of an extracellular protease from thermophilic Bacillus sp. Brazilian Journal of Microbiology, 35 (1-2): 91-96.
https://doi.org/10.1590/S1517-83822004000100015
Neal, A.L., Rossmann, M., Brearley, C., Akkari, E., Guyomar, C., Clark, I.M., Allen, E., Hirsch, P.R., 2017. Land-use influences phosphatase gene microdiversity in soils. Environmental Microbiology, 19: 2740-2753.
https://doi.org/10.1111/1462-2920.13778
Ogbo, F.C., 2010. Conversion of cassave wastes for biofertilizer production using phosphate solubilizing fungi. Bioresource Technology, 101: 4120-4124.
https://doi.org/10.1016/j.biortech.2009.12.057
Padan, E., Bibi, E., Ito, M., Krulwich, T.A., 2005. Alkaline pH homeostasis in bacteria: New insights. Biochimica et Biophysica Acta, 1717(2): 67-88.
https://doi.org/10.1016/j.bbamem.2005.09.010
Palacios, M.C., Haros, M., Rosell, C.M., Sanz, Y., 2004. Characterization of an acid phosphatase from Lactobacillus pentosus: regulation and biochemical properties. Y. Sanz, Instituto de Agroquímica y Tecnología de Alimentos (C.S.I.C), PO Box 73, 46100 Burjasot (Valencia), Spain, 1365-2672.
Patel, D.K., Murawala, P., Archana, G., Kumar, G.N., 2011. Repression of mineral phosphate solubilizing phenotype in the presence of weak organic acids in plant growth promoting Pseudomonads fluorescent. Bioresource Technology, 102: 3055-3061.
https://doi.org/10.1016/j.biortech.2010.10.041
Rahmansyah, M. and Sudiana, I.M., 2010. Production of Acid Phosphatase in Bacillus sp. Isolated from Forest Soil of Gunung Salak National Park. Jurnal Biologi Indonesia, 6 (3): 313-323.
Rodriguez, H. and Fraga, R., 1999. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnology Advances, 17: 319-339.
https://doi.org/10.1016/S0734-9750(99)00014-2
Rombola, T.H., Pedrinho, E.A.N., Lemos, E.G.M., Gonçalves, A.M., Santos, L.F.J., Jr, J.M.P., 2014. Identification and enzymatic characterization of acid phosphatase from Burkholderia gladioli. BMC Res Notes, 7: 221.
https://doi.org/10.1186/1756-0500-7-221
Roychoudhury, S., Parulekar, S.J. and Weigand, W.A., 1988. Cell Growth and a-Amylase Production Characteristics of Bacillus amyloliquefaciens. Biotechnol Bioeng, 33: 197-206.
https://doi.org/10.1002/bit.260330209
Saikrithika, S., Krishnaswamy, V.G. and Sujatha, B.A., 2016. Study on isolation of phosphate solubilizing bacterial (psb) strain from vermicompost soil and their phosphate solubilizing abilities. International Journal of Advanced Biotechnology and Research, 7(2): 526-535.
Sashidhar, B. and Podile, A.R., 2010. Mineral phosphate solubilization by rhizosphere bacteria and scope for manipulation of the direct oxidation pathway involving glucose dehydrogenase. Journal of Applied Microbiology, 109 (1): 1-12.
https://doi.org/10.1111/j.1365-2672.2009.04654.x
Sasirekha, B., Bedashree, T., Champa, K.L., 2012. Optimization and partial purification of extracellular phytase from Pseudomonas aeruginosa p6. European Journal of Experimental Biology, 2(1): 95-104.
Satyaprakash, M., Nikitha, T., Reddi, E.U.B., Sadhana, B., Satya Vani, S., 2017. A review on phosphorus and phosphate solubilising bacteria and their role in plant nutrition. International Journal of Current Microbiology and Applied Scences, 6: 2133-2144.
https://doi.org/10.20546/ijcmas.2017.604.251
Sharma, S.B., Sayyed, R.Z., Trivedi, M.H., Gobi, T.A., 2013. Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils, SpringerPlus, 2: 587.
https://doi.org/10.1186/2193-1801-2-587
Suslow, T.V., Schroth, M.N. and Isaka, M., 1981, Application of a rapid method of Gram differetation of plant pathogenic and saprophytic bacteria without staning. Department of agriculture, Fukui Prefectural College, Ohata-cho, Fukui, Japan.
https://doi.org/10.1094/Phyto-72-917
Tabatabai, M.A. and Bremner, J.M., 1969. Use of p-nitrophenol phosphate for the assay of soil phosphatase activity. Soil Biology Biochemistry, 1: 301-307.
https://doi.org/10.1016/0038-0717(69)90012-1
Tak, H.I., Ahmad, F., Babalola, O.O., Inam, A., 2012. Growth, photosynthesis and yield of chickpea as influenced by urban wastewater and different levels of phosphorus. International Journal of Plant Research, 2: 6-13.
https://doi.org/10.5923/j.plant.20120202.02
Tan, H., Wu, X., Xie, L., Huang, Z., Gan, B., 2016. Identification and characterization of a mesophilic phytase highly resilient to high-temperatures from fungus-garden associated metagenome. Applied Microbiology and Biotechnology, 100: 2225-2241.
https://doi.org/10.1007/s00253-015-7097-9
Tazisong, I.A., Senwo, Z.N. and He, Z., 2015. Phosphatase hydrolysis of organic phosphorus compounds. Advance Enzyme Research, 3(2): 39-51.
https://doi.org/10.4236/aer.2015.32005
Turner, B.L., Richardson, A.E. and Mullney, E.J., 2007, Inositol phosphates: Linking Agriculture and the Environment. CAB International, Wallingford.
https://doi.org/10.1079/9781845931520.0000
Walpola, B.C. and Yoon, M.H., 2013. Isolation and characterization of phosphate solubilizing. African Journal of Microbiology Research, 7: 266-275.
Walpola, B.C. and Yoon, M.H., 2012. Prospectus of phosphate solubilizing microorganisms and phosphorus availability in agricultural soils: a review. African Journal of Microbiology Research, 6: 6600-6605.
https://doi.org/10.5897/AJMR12.889
Wang, S.L., Kao, T.Y., Wang, C.L., Yen, Y.H., Chern, M.K., Chen, Y.H., 2006. A solvent stable metalloprotease produced by Bacillus sp. TKU004 and its application in the deproteinization of squid pen for [beta]-chitin preparation. Enzyme and Microbial Technology, 39: 724-731.
https://doi.org/10.1016/j.enzmictec.2005.12.007
Wu, Y., He, Y., Yin, H., Chen, W., Wang, Z., Xu, L., Zhang, A., 2012. Isolation of phosphate-solubilizing fungus and its application in solubilization of rock phosphates. Pakistan Journal of Biological Sciences, 15(23): 1144-1151.
https://doi.org/10.3923/pjbs.2012.1144.1151
Yoneyama, K., Xie X., Kim H.I., Kisugi, T., Nomura, T., Sekimoto, H., Yokota, T., 2012. How do nitrogen and phosphorus deficiencies affect strigolactone production and exudation? Planta, 235: 1197-1207.
https://doi.org/10.1007/s00425-011-1568-8
DOI: https://doi.org/10.26789/AEB.2022.02.002
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Nguyen Khoi Nghia et al.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.