Johnson D B, 2014, Biomining — biotechnologies for extracting and recovering metals from ores and waste materials. Current Opinion in Biotechnology, vol.30: 24–31. http://dx.doi.org/10.1016/j.copbio.2014.04.008.
Schippers A, Hedrich S, Vasters J, et al. 2014, Biomining: metal recovery from ores with microorganisms, in Schippers A, Glombitza F and Sand W (eds), Geobiotechnology I, Springer, Berlin: 1–47. http://dx.doi.org/10.1007/10_2013_216.
Johnson D B and Hallberg K B, 2005, Acid mine drainage remediation options: A review. Science of the Total Environment, vol.338(1): 3–14. http://dx.doi.org/10.1016/j.scitotenv.2004.09.002.
Sand W, Jozsa P G, Kovacs Z M, et al. 2007, Long-term evaluation of acid rock drainage mitigation measures in large lysimeters. Journal of Geochemical Exploration, vol.92(2–3): 205–211. http://dx.doi.org/10.1016/j.gexplo.2006.08.006.
Schippers A, Breuker A, Blazejak A, et al. 2010, The bio-geochemistry and microbiology of sulfidic mine waste and bioleaching dumps and heaps, and novel Fe (II)-oxid-izing bacteria. Hydrometallurgy, vol.104(3–4): 342–350. http://dx.doi.org/10.1016/j.hydromet.2010.01.012.
Wheaton G, Counts J, Mukherjee A, et al. 2015, The confluence of heavy metal biooxidation and heavy metal resistance: implications for bioleaching by extreme thermoacidophiles. Minerals, vol.5(3): 397–451. http://dx.doi.org/10.3390/min5030397.
Zhang R, Bellenberg S, Neu T R, et al. 2016, The biofilm lifestyle of acidophilic metal/sulfur-oxidizing microorganisms, in Rampelotto P H (ed), Biotechnology of Extremophiles: Advances and Challenges, Springer, Switzerland: 177–213. http://dx.doi.org/10.1007/978-3-319-13521-2_6.
Vera M, Schippers A and Sand W, 2013, Progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation — part A. Applied Microbiology and Biotechnology, vol.97(17): 7529–7541. http://dx.doi.org/10.1007/s00253-013-4954-2.
González A, Bellenberg S, Mamani S, et al. 2013, AHL signaling molecules with a large acyl chain enhance biofilm formation on sulfur and metal sulfides by the bioleaching bacterium Acidithiobacillus ferrooxidans. Applied Microbiology and Biotechnology, vol.97(8): 3729– 3737. http://dx.doi.org/10.1007/s00253-012-4229-3.
Farah C, Vera V, Morin D, et al. 2005, Evidence for a functional quorum-sensing type AI-1 system in the extremeophilic bacterium Acidithiobacillus ferrooxidans. Applied and Environmental Microbiology, vol.71 (11): 7033–7040. http://dx.doi.org/10.1128/AEM.71.11.7033-7040.2005.
Bellenberg S, Diaz M, Noël N, et al. 2014, Biofilm formation, communication and interactions of leaching bacteria during colonization of pyrite and sulfur surfaces. Research in Microbiology, vol.165(9): 773–781. http://dx.doi.org/10.1016/j.resmic.2014.08.006.
Chen Y, Li J, Chen L, et al. 2014, Biogeochemical processes governing natural pyrite oxidation and release of acid metalliferous drainage. Environmental Science & Technology, vol.48(10): 5537–5545. http://dx.doi.org/10.1021/es500154z.
Edwards K J, Bond P L, Gihring T M, et al. 2000, An archaeal iron-oxidizing extreme acidophile important in acid mine drainage. Science, vol.287(5459): 1796–1799. http://dx.doi.org/10.1126/science.287.5459.1796.
Van Hille R, Van Wyk N and Harrison S, 2011, Review of the microbial ecology of BIOX® reactors illustrate the dominance of the genus Ferroplasma in many commercial reactors, in Biohydrometallurgy: Biotech Key to Unlock Minerals Resources Value. Central South University Press, Changsha, Central South University Press, Changsha: 1021.
Dopson M, Baker-Austin C, Hind A, et al. 2004, Characterization of Ferroplasma isolates and Ferroplasma acidarmanus sp. nov., extreme acidophiles from acid mine drainage and industrial bioleaching environments. Applied and Environmental Microbiology, vol.70(4): 2079– 2088. http://dx.doi.org/10.1128/AEM.70.4.2079-2088.2004.
Golyshina O V and Timmis K N, 2005, Ferroplasma and relatives, recently discovered cell wall-lacking archaea making a living in extremely acid, heavy metal-rich environments. Environmental Microbiology, vol.7(9): 1277– 1288. http://dx.doi.org/10.1111/j.1462-2920.2005.00861.x.
Zhou H, Zhang R, Hu P, et al. 2008, Isolation and characterization of Ferroplasma thermophilum sp. nov., a novel extremely acidophilic, moderately thermophilic archaeon and its role in bioleaching of chalcopyrite. Journal of Applied Microbiology, vol.105(2): 591–601. http://dx.doi.org/10.1111/j.1365-2672.2008.03807.x.
Zhang L, Zhou W, Li K, et al. 2015, Synergetic effects of Ferroplasma thermophilum in enhancement of copper concentrate bioleaching by Acidithiobacillus caldus and Leptospirillum ferriphilum. Biochemical Engineering Journal, vol.93: 142–150. http://dx.doi.org/10.1016/j.bej.2014.10.004.
Okibe N and Johnson D B, 2004, Biooxidation of pyrite by defined mixed cultures of moderately thermophilic acidophiles in pH-controlled bioreactors: Significance of microbial interactions. Biotechnology and Bioengineering, vol.87(5): 574–583. http://dx.doi.org/10.1002/bit.20138.
Wilmes P, Remis J P, Hwang M, et al. 2009, Natural acidophilic biofilm communities reflect distinct organismal and functional organization. ISME J, vol.3(2): 266–270. http://dx.doi.org/10.1038/ismej.2008.90.
Li Q, Zhang Z, Krok B A, et al. 2015, Biofilm formation of Sulfobacillus thermosulfidooxidans on pyrite in the presence of Leptospirillum ferriphilum. Advanced Materials Research, vol.1130: 141–144. http://dx.doi.org/10.4028/www.scientific.net/AMR.1130.141.
Mackintosh M, 1978, Nitrogen fixation by Thiobacillus ferrooxidans. Journal of General Microbiology, vol.105: 215–218. http://dx.doi.org/10.1099/00221287-105-2-215.
Zhang R, Neu T, Bellenberg S, et al. 2015, Use of lectins to in situ visualize glycoconjugates of extracellular polymeric substances in acidophilic archaeal biofilms. Microbial biotechnology, vol.8(3): 448–461. http://dx.doi.org/10.1111/1751-7915.12188.
Razatos A, Ong Y L, Sharma M M, et al. 1998, Evaluating the interaction of bacteria with biomaterials using atomic force microscopy. Journal of Biomaterials Science Polymer Edition, vol.9(12): 1361–1373. http://dx.doi.org/10.1163/156856298X00442.
Razatos A, Ong Y L, Sharma M M, et al. 1998, Molecular determinants of bacterial adhesion monitored by atomic force microscopy. Proceedings of the National Academy of Sciences, vol.95(19): 11059–11064. http://dx.doi.org/10.1073/pnas.95.19.11059.
Florian B, Noël N, Thyssen C, et al. 2011, Some quantitative data on bacterial attachment to pyrite. Minerals Engineering, vol.24(11): 1132–1138. http://dx.doi.org/10.1016/j.mineng.2011.03.008.
Sand W and Gehrke T, 2006, Extracellular polymeric substances mediate bioleaching/biocorrosion via interfacial processes involving iron(III) ions and acidophilic bacteria. Research in Microbiology, vol.157(1): 49– 56. http://dx.doi.org/10.1016/j.resmic.2005.07.012.
Harneit K, Göksel A, Kock D, et al. 2006, Adhesion to metal sulfide surfaces by cells of Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans and Leptospirillum ferrooxidans. Hydrometallurgy, vol.83(1): 245– 254. http://dx.doi.org/10.1016/j.hydromet.2006.03.044.
Li Y Q, Wan D S, Huang S S, et al. 2010, Type IV pili of Acidithiobacillus ferrooxidans are necessary for sliding, twitching motility, and adherence. Current Microbiology, vol.60(1): 17–24. http://dx.doi.org/10.1007/s00284-009-9494-8.
Pohlschroder M and Esquivel R N, 2015, Archaeal type IV pili and their involvement in biofilm formation. Frontiers in microbiology, vol.6. http://dx.doi.org/10.3389/fmicb.2015.00190.
Henche A L, Koerdt A, Ghosh A, et al. 2012, Influence of cell surface structures on crenarchaeal biofilm formation using a thermostable green fluorescent protein. Environmental Microbiology, vol.14(3): 779–793. http://dx.doi.org/10.1111/j.1462-2920.2011.02638.x.
Tyson G W, Chapman J, Hugenholtz P, et al. 2004, Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature, vol.428(6978): 37–43. http://dx.doi.org/10.1038/nature02340.
Acuña J, Rojas J, Amaro A, et al. 1992, Chemotaxis of Leptospirillum ferrooxidans and other acidophilic chemo-lithotrophs: comparison with the Escherichia coli chem.-osensory system. FEMS Microbiology Letters, vol.96(1): 37–42.
http://dx.doi.org/10.1111/j.1574-6968.1992.tb05390.x.
Usher K M, Shaw J A, Kaksonen A H, et al. 2010, Elemental analysis of extracellular polymeric substances and granules in chalcopyrite bioleaching microbes. Hydrometallurgy, vol.104(3–4): 376–381. http://dx.doi.org/10.1016/j.hydromet.2010.02.028.
Song J, Lin J, Ren Y, et al. 2010, Competitive adsorption of binary mixture of Leptospirillum ferriphilum and Acidithiobacillus caldus onto pyrite. Biotechnology and Bioprocess Engineering, vol.15(6): 923-930. http://dx.doi.org/10.1007/s12257-010-0008-0.
Rohwerder T, Gehrke T, Kinzler K, et al. 2003, Bioleaching review part A: progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation. Applied Microbiology and Biotechnology, vol.63(3): 239–248. http://dx.doi.org/10.1007/s00253-003-1448-7.
Bacelar-Nicolau P and Johnson D B, 1999, Leaching of pyrite by acidophilic heterotrophic iron-oxidizing bacteria in pure and mixed cultures. Applied and Environmental Microbiology, vol.65(2): 585–590.
Noël N, 2014, Attachment of acidophilic bacteria to solid substrata, dissertation, Universität Duisburg-Essen, Essen, Germany.
Johnson D, 2008, Biodiversity and interactions of acidophilus: key to understanding and optimizing microbial processing of ores and concentrates. Transactions of Nonferrous Metals Society of China, vol.18(6): 1367– 1373. http://dx.doi.org/doi:10.1016/S1003-6326(09)60010-8.
Hallmann R, Friedrich A, Koops H P, et al. 1993, Physiological characteristics of Thiobacillus ferrooxidans and Leptospirillum ferrooxidans and pyhsiochemical factors influence microbial metal leaching. Geomicrobiology Journal, vol.10(3–4): 193–206. http://dx.doi.org/10.1080/01490459209377920.
Rodríguez Y, Ballester A, Blázquez M L, et al. 2003, Study of bacterial attachment during the bioleaching of pyrite, chalcopyrite, and sphalerite. Geomicrobiology Journal, vol.20(2): 131–141. http://dx.doi.org/10.1080/01490450390193246.
Vardanyan A, Stepanyan S, Vardanyan N, et al. 2015, Study and assessment of microbial communities in natural and commercial bioleaching systems. Minerals Engineering, vol.81: 167–172. http://dx.doi.org/10.1016/j.mineng.2015.05.001.
Merino M P, Andrews B A and Asenjo J A, 2015, Stoichiometric model and flux balance analysis for a mixed culture of Leptospirillum ferriphilum and Ferroplasma acidiphilum. Biotechnology Progress, vol.31(2): 307–315. http://dx.doi.org/10.1002/btpr.2028.
Abu-Lail N I and Camesano T A, 2003, Polysaccharide properties probed with atomic force microscopy. Journal of Microscopy, vol.212(3): 217–238. http://dx.doi.org/10.1111/j.1365-2818.2003.01261.x.
Zhu J, Li Q, Jiao W, et al. 2012, Adhesion forces between cells of Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans or Leptospirillum ferrooxidans and chalcopyrite. Colloids and Surfaces B: Biointerfaces, vol.94: 95–100. http://dx.doi.org/10.1016/j.colsurfb.2012.01.022.
Diao M, Taran E, Mahler S, et al. 2014, Quantifying adhesion of acidophilic bioleaching bacteria to silica and pyrite by atomic force microscopy with a bacterial probe. Colloids and Surfaces B: Biointerfaces, vol.115: 229–236. http://dx.doi.org/10.1016/j.colsurfb.2013.11.047.
Zhu J, Wang Q, Zhou S, et al. 2015, Insights into the relation between adhesion force and chalcopyrite-bioleaching by Acidithiobacillus ferrooxidans. Colloids and Surfaces B: Biointerfaces, vol.126: 351–357. http://dx.doi.org/10.1016/j.colsurfb.2014.11.036.
Florian B M, 2012, Investigation of initial attachment and biofilm formation of mesophilic leaching bacteria in pure and mixed cultures and their efficiency of pyrite dissolution, dissertation, Universität Duisburg-Essen, Es-sen, Germany.
Schopf S, Wanner G, Rachel R, et al. 2008, An archaeal bi-species biofilm formed by Pyrococcus furiosus and Methanopyrus kandleri. Archives of Microbiology, vol.190(3): 371–377. http://dx.doi.org/10.1007/s00203-008-0371-9.
Neu T R, Swerhone G D and Lawrence J R, 2001, Assessment of lectin-binding analysis for in situ detection of glycoconjugates in biofilm systems. Microbiology, vol.147(2): 299–313. http://dx.doi.org/10.1099/00221287-147-2-299.
Zhang R, Neu T R, Zhang Y, et al. 2015, Visualization and analysis of EPS glycoconjugates of the thermoacidophilic archaeon Sulfolobus metallicus. Applied Microbiology and Biotechnology, vol.99(17): 7343–7356. http://dx.doi.org/10.1007/s00253-015-6775-y.
Zhang R, Liu J, Neu T R, et al. 2015, Interspecies interactions of metal-oxidizing thermo-acidophilic archaea Acidianus and Sulfolobus. Advanced Materials Research, vol.1130: 105–108. http://dx.doi.org/10.4028/www.scientific.net/AMR.1130.105.
Castro C, Zhang R, Liu J, et al. 2016, Biofilm formation and interspecies interactions in mixed cultures of thermoacidophilic archaea Acidianus spp. and Sulfolobus metallicus. Research in Microbiology, vol.167(7): 604– 612.
http://dx.doi.org/10.1016/j.resmic.2016.06.005.