Abu baker MH, Fatima, M. H. (2018). Physicochemical Characteristics of Malaysian Stingless Bee Honey from Trigona Species. International Medical Journal Malaysia, 17.
Abbas, H. A. (2014a). Comparative antibacterial and antibiofilm activities of manuka honey and Egyptian clover honey. Asian Journal of Applied Sciences (ISSN: 2321–0893), 2(02).
Abbas, H. A. (2014b). Comparative antibacterial and antibiofilm activities of manuka honey and Egyptian clover honey. Asian Journal of Applied Sciences, 2(2).
Ahmed, A. A., & Salih, F. A. (2019). Low concentrations of local honey modulate Exotoxin A expression, and quorum sensing related virulence in drug-resistant Pseudomonas aeruginosa recovered from infected burn wounds. Iranian journal of basic medical sciences, 22(5), 568.
Al-Kafaween, M. A., Al-Jamal, H. A. N., Hilmi, A. B. M., Elsahoryi, N. A., Jaffar, N., & Zahri, M. K. (2020). Antibacterial properties of selected Malaysian Tualang honey against Pseudomonas aeruginosa and Streptococcus pyogenes. Iranian Journal of Microbiology, 12(6), 565.
Al-kafaween, M. A., & Al-Jamal, H. A. N. (2022). A comparative study of antibacterial and antivirulence activities of four selected honeys to Manuka honey. Iranian Journal of Microbiology, 14(2), 238-251.
Al-kafaween, M. A., Mohd Hilmi, A. B., Jaffar, N., Al-Jamal, H. A. N., & Zahri, M. K. (2019). Determination of optimum incubation time for formation of Pseudomonas aeruginosa and Streptococcus pyogenes biofilms in microtiter plate. Bulletin of the National Research Centre, 43(1), 1-5.
Al-kafaween, M. A., & Hilmi, A. B. M. (2022). Evaluation of the effect of different growth media and incubation time on the suitability of biofilm formation by Pseudomonas aeruginosa and Streptococcus pyogenes. Applied Environmental Biotechnology, 6(2), 19-26.
Al-kafaween, A. B. M. H., Hamid Ali Nagi Al-Jamal. (2021). The Beneficial Effects of Stingless Bee Kelulut Honey Against Pseudomonas aeruginosa and Streptococcus pyogenes Planktonic and Biofilm. Tropical Journal of Natural Product Research, 5(10), 1788-1796.
Al-kafaween, M. A., Hilmi, A. B. M., Al-Jamal, H. A. N., Al-Groom, R. M., Elsahoryi, N. A., & Al-Sayyed, H. (2021). Potential Antibacterial Activity of Yemeni Sidr Honey Against Pseudomonas aeruginosa and Streptococcus pyogenes. Anti-Infective Agents, 19(4), 51-65.
Al-Kafaween, M. A., Hilmi, A. B. M., Al-Jamal, H. A. N., Elsahoryi, N. A., Jaffar, N., & Zahri, M. K. (2020). Pseudomonas aeruginosa and Streptococcus pyogenes exposed to Malaysian trigona honey in vitro demonstrated downregulation of virulence factor. Iranian Journal of Biotechnology, 18(4), e2542.
Al-kafaween, M. A., Mohd Hilmi, A. B., Jaffar, N., Nagi Al-Jamal, H. A., Zahri, M. K., Amonov, M., Elsahoryi, N. A. (2020). Effects of Trigona honey on the Gene Expression Profile of Pseudomonas aeruginosa ATCC 10145 and Streptococcus pyogenes ATCC 19615. Jordan Journal of Biological Sciences, 13(2).
Al-kafaween, M. A., Mohd Hilmi, A. B., Nagi Al-Jamal, H. A., Jaffar, N., Al-Sayyed, H., & Zahri, M. K. (2021). Effects of Selected Malaysian Kelulut Honey on Biofilm Formation and the Gene Expression Profile of Staphylococcus Aureus, Pseudomonas Aeruginosa and Escherichia Coli. Jordan Journal of Pharmaceutical Sciences, 14(1).
Alkhyat, S. H., & Al-Maqtari, M. (2014). Effectiveness of antibiotics blended with honey on some pathogenic bacteria species. International Journal of Microbiology and Immunology Research, 2(7), 109-115.
Allen, K., Molan, P., & Reid, G. (1991). A survey of the antibacterial activity of some New Zealand honeys. Journal of pharmacy and pharmacology, 43(12), 817-822.
Alzahrani, H. A., Alsabehi, R., Boukraâ, L., Abdellah, F., Bellik, Y., & Bakhotmah, B. A. (2012). Antibacterial and antioxidant potency of floral honeys from different botanical and geographical origins. Molecules, 17(9), 10540-10549.
Anthimidou, E., & Mossialos, D. (2013). Antibacterial activity of Greek and Cypriot honeys against Staphylococcus aureus and Pseudomonas aeruginosa in comparison to manuka honey. Journal of medicinal food, 16(1), 42-47.
Bang, L. M., Buntting, C., & Molan, P. (2003). The effect of dilution on the rate of hydrogen peroxide production in honey and its implications for wound healing. The Journal of Alternative & Complementary Medicine, 9(2), 267-273.
Bjarnsholt, T. (2013). The role of bacterial biofilms in chronic infections. Apmis, 121, 1-58.
Blair, S., Cokcetin, N., Harry, E., & Carter, D. (2009). The unusual antibacterial activity of medical-grade Leptospermum honey: antibacterial spectrum, resistance and transcriptome analysis. European journal of clinical microbiology & infectious diseases, 28(10), 1199-1208.
Boorn, K., Khor, Y. Y., Sweetman, E., Tan, F., Heard, T., & Hammer, K. (2010). Antimicrobial activity of honey from the stingless bee Trigona carbonaria determined by agar diffusion, agar dilution, broth microdilution and time‐kill methodology. Journal of applied microbiology, 108(5), 1534-1543.
Bouacha, M., Ayed, H., & Grara, N. (2018). Honey bee as alternative medicine to treat eleven multidrug-resistant bacteria causing urinary tract infection during pregnancy. Scientia pharmaceutica, 86(2), 14.
Bouacha, M., Boudiar, I., Akila, A., Al-Kafaween, M. A., & Khallef, M. (2022). The Antimutagenic Effect Of Multifloral Honey In Salmonella/Microsomal Assay And Its Correlation With The Total Polyphenolic Content. Journal of microbiology, biotechnology and food sciences, 11(6), e5557-e5557.
Mabrouka B, S. B., Ines B, Al-Kafaween MA. (2022). Screening of the antibacterial and antibiofilm effect of multifloral honey against multidrug-resistant Pseudomonas aeruginosa. Acta Microbiologica Hellenica, 67(1), 69-79.
Boukraa, L., & Niar, A. (2007). Sahara honey shows higher potency against Pseudomonas aeruginosa compared to north Algerian types of honey. Journal of medicinal food, 10(4), 712-714.
Brudzynski, K., Abubaker, K., & Castle, A. (2011). Re-examining the role of hydrogen peroxide in bacteriostatic and bactericidal activities of honey. Frontiers in microbiology, 2, 213.
Chen, H., Wubbolts, R. W., Haagsman, H. P., & Veldhuizen, E. J. (2018). Inhibition and eradication of Pseudomonas aeruginosa biofilms by host defence peptides. Scientific reports, 8(1), 1-10.
Elbanna, K., Attalla, K., Elbadry, M., Abdeltawab, A., Gamal-Eldin, H., & Ramadan, M. F. (2014). Impact of floral sources and processing on the antimicrobial activities of different unifloral honeys. Asian Pacific Journal of Tropical Disease, 4(3), 194-200.
França, A., Melo, L. D., & Cerca, N. (2011). Comparison of RNA extraction methods from biofilm samples of Staphylococcus epidermidis. BMC research notes, 4(1), 572.
Glinski, Z., & Jarosz, J. (2001). Infection and immunity in the honey bee Apis mellifera. Apiacta, 36(1), 12-24.
Goldsworthy, M. J. H. (2008). Gene expression of Pseudomonas aeruginosa and MRSA within a catheter-associated urinary tract infection biofilm model. Bioscience Horizons, 1(1), 28-37.
Grecka, K., Kuś, P. M., Worobo, R. W., & Szweda, P. (2018). Study of the Anti-Staphylococcal Potential of Honeys Produced in Northern Poland. Molecules, 23(2), 260.
Gupta, P., Sarkar, S., Das, B., Bhattacharjee, S., & Tribedi, P. (2016). Biofilm, pathogenesis and prevention—a journey to break the wall: a review. Archives of microbiology, 198(1), 1-15.
Henriques, A. F. F. M. (2006). Thesis submitted in candidature for the degree of. University of Wales.
Huwaitat, R., Coulter, S. M., Porter, S. L., Pentlavalli, S., & Laverty, G. (2021). Antibacterial and antibiofilm efficacy of synthetic polymyxin‐mimetic lipopeptides. Peptide Science, 113(1), e24188.
Jamal, M., Ahmad, W., Andleeb, S., Jalil, F., Imran, M., Nawaz, M. A., . . . Kamil, M. A. (2018). Bacterial biofilm and associated infections. Journal of the Chinese Medical Association, 81(1), 7-11.
Jarrar, Y., Jarrar, Q., Abu-Shalhoob, M., & Sha'ban, E. (2019). Relative expression of mouse Udp-glucuronosyl transferase 2b1 gene in the livers, kidneys, and hearts: the influence of nonsteroidal anti-inflammatory drug treatment. Current Drug Metabolism, 20(11), 918-923.
Jarrar, Y. B., Jarrar, Q., Abaalkhail, S. J., Moh'd Kalloush, H., Naser, W., Zihlif, M., . . . Lee, S. J. (2022). Molecular toxicological alterations in the mouse hearts induced by sub‐chronic thiazolidinedione drugs administration. Fundamental & Clinical Pharmacology, 36(1), 143-149.
Jenkins, R., Burton, N., & Cooper, R. (2014). Proteomic and genomic analysis of methicillin-resistant Staphylococcus aureus (MRSA) exposed to manuka honey in vitro demonstrated down-regulation of virulence markers. Journal of Antimicrobial Chemotherapy, 69(3), 603-615.
Jibril, F. I., Hilmi, A. B. M., & Manivannan, L. (2019). Isolation and characterization of polyphenols in natural honey for the treatment of human diseases. Bulletin of the National Research Centre, 43(1), 4.
Kwakman, P. H., te Velde, A. A., de Boer, L., Speijer, D., Vandenbroucke-Grauls, C. M., & Zaat, S. A. (2010). How honey kills bacteria. The FASEB Journal, 24(7), 2576-2582.
Kwakman, P. H., & Zaat, S. A. (2012). Antibacterial components of honey. IUBMB life, 64(1), 48-55.
Lebeaux, D., Ghigo, J.-M., & Beloin, C. (2014). Biofilm-related infections: bridging the gap between clinical management and fundamental aspects of recalcitrance toward antibiotics. Microbiology and Molecular Biology Reviews, 78(3), 510-543.
Lerrer, B., Zinger-Yosovich, K. D., Avrahami, B., & Gilboa-Garber, N. (2007). Honey and royal jelly, like human milk, abrogate lectin-dependent infection-preceding Pseudomonas aeruginosa adhesion. The ISME journal, 1(2), 149.
Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. methods, 25(4), 402-408.
Lu, J., Carter, D. A., Turnbull, L., Rosendale, D., Hedderley, D., Stephens, J., . . . Whitchurch, C. B. (2013). The effect of New Zealand kanuka, manuka and clover honeys on bacterial growth dynamics and cellular morphology varies according to the species. PloS one, 8(2), e55898.
Lu, J., Cokcetin, N. N., Burke, C. M., Turnbull, L., Liu, M., Carter, D. A., . . . Harry, E. J. (2019). Honey can inhibit and eliminate biofilms produced by Pseudomonas aeruginosa. Scientific reports, 9(1), 1-13.
Maddocks, S. E., & Jenkins, R. E. (2013). Honey: a sweet solution to the growing problem of antimicrobial resistance? Future microbiology, 8(11), 1419-1429.
Maddocks, S. E., Lopez, M. S., Rowlands, R. S., & Cooper, R. A. (2012). Manuka honey inhibits the development of Streptococcus pyogenes biofilms and causes reduced expression of two fibronectin binding proteins. Microbiology, 158(3), 781-790.
Mavric, E., Wittmann, S., Barth, G., & Henle, T. (2008). Identification and quantification of methylglyoxal as the dominant antibacterial constituent of Manuka (Leptospermum scoparium) honeys from New Zealand. Molecular nutrition & food research, 52(4), 483-489.
Molan, P. C. (1992). The antibacterial activity of honey: 1. The nature of the antibacterial activity. Bee world, 73(1), 5-28.
Molan, P. C. (1999). The role of honey in the management of wounds.
Moussa, A., Noureddine, D., Saad, A., Abdelmalek, M., & Salima, B. (2015). The influence of botanical origin and physico-chemical parameters on the antifungal activity of Algerian honey. Journal of Plant Pathology & Microbiology.
Ng, W.-J., Ken, K.-W., Kumar, R.-V., Gunasagaran, H., Chandramogan, V., & Lee, Y.-Y. (2014). In-vitro screening of Malaysian honey from different floral sources for antibacterial activity on human pathogenic bacteria. African Journal of Traditional, Complementary and Alternative Medicines, 11(2), 315-318.
Ng, W.-J., Lim, K.-Y., Chong, J.-Y., & Low, K.-L. (2014). In vitro screening of honey against Enterococcus spp. biofilm. Journal of Medical and Bioengineering Vol, 3(1).
Okhiria, O., Henriques, A., Burton, N., Peters, A., & Cooper, R. (2009). Honey modulates biofilms of Pseudomonas aeruginosa in a time and dose dependent manner. J ApiProd ApiMed Sci, 1, 6-10.
Pećanac, M., Janjić, Z., Komarčević, A., Pajić, M., Dobanovački, D., & Mišković-Skeledžija, S. (2013). Burns treatment in ancient times. Medicinski pregled, 66(5-6), 263-267.
Proaño, A., Coello, D., Villacrés-Granda, I., Ballesteros, I., Debut, A., Vizuete, K., . . . Álvarez-Suarez, J. M. (2021). The osmotic action of sugar combined with hydrogen peroxide and bee-derived antibacterial peptide Defensin-1 is crucial for the antibiofilm activity of eucalyptus honey. LWT, 136, 110379.
Roberts, A. E., Maddocks, S. E., & Cooper, R. A. (2012). Manuka honey is bactericidal against Pseudomonas aeruginosa and results in differential expression of oprF and algD. Microbiology, 158(12), 3005-3013.
Roberts, A. E., Maddocks, S. E., & Cooper, R. A. (2014). Manuka honey reduces the motility of Pseudomonas aeruginosa by suppression of flagella-associated genes. Journal of Antimicrobial Chemotherapy, 70(3), 716-725.
Roberts, A. E., Maddocks, S. E., & Cooper, R. A. (2015). Manuka honey reduces the motility of Pseudomonas aeruginosa by suppression of flagella-associated genes. Journal of Antimicrobial Chemotherapy, 70(3), 716-725.
Roberts, A. E. L. (2014). The inhibition of Pseudomonas aeruginosa by manuka honey. Cardiff Metropolitan University.
Schmittgen, T. D., & Livak, K. J. (2008). Analyzing real-time PCR data by the comparative C T method. Nature protocols, 3(6), 1101.
Shenoy, V. P., Ballal, M., Shivananda, P., & Bairy, I. (2012). Honey as an antimicrobial agent against Pseudomonas aeruginosa isolated from infected wounds. Journal of global infectious diseases, 4(2), 102.
Sherlock, O., Dolan, A., Athman, R., Power, A., Gethin, G., Cowman, S., & Humphreys, H. (2010a). Comparison of the antimicrobial activity of Ulmo honey from Chile and Manuka honey against methicillin-resistant Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa. BMC complementary and alternative medicine, 10(1), 47.
Sherlock, O., Dolan, A., Athman, R., Power, A., Gethin, G., Cowman, S., & Humphreys, H. (2010b). Comparison of the antimicrobial activity of Ulmo honey from Chile and Manuka honey against methicillin-resistant Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa. BMC complementary and alternative Medicine, 10(1), 1-5.
Singleton, P. (2004). Bacteria in biology, biotechnology and medicine: John Wiley & Sons.
Sofowora, A., Ogunbodede, E., & Onayade, A. (2013). The role and place of medicinal plants in the strategies for disease prevention. African Journal of Traditional, Complementary and Alternative Medicines, 10(5), 210-229.
Tarawneh, O., Abu Mahfouz, H., Hamadneh, L., Deeb, A. A., Al-Sheikh, I., Alwahsh, W., & Fadhil Abed, A. (2022). Assessment of persistent antimicrobial and anti-biofilm activity of p-HEMA hydrogel loaded with rifampicin and cefixime. Scientific reports, 12(1), 1-11.
Tarawneh, O., Alwahsh, W., Abul-Futouh, H., Al-Samad, L. A., Hamadneh, L., Abu Mahfouz, H., & Fadhil Abed, A. (2021). Determination of Antimicrobial and Antibiofilm Activity of Combined LVX and AMP Impregnated in p (HEMA) Hydrogel. Applied Sciences, 11(18), 8345.
Tumin, N., Halim, N., Shahjahan, M., Noor Izani, N., Sattar, M. A., Khan, A., & Mohsin, S. (2005). Antibacterial activity of local Malaysian honey. Malaysian Journal of Pharmaceutical Sciences, 3(2), 1-10.
Wang, R., Starkey, M., Hazan, R., & Rahme, L. (2012). Honey’s ability to counter bacterial infections arises from both bactericidal compounds and QS inhibition. Frontiers in microbiology, 3, 144.
Wasfi, R., Elkhatib, W. F., & Khairalla, A. S. (2016). Effects of selected Egyptian honeys on the cellular ultrastructure and the gene expression profile of Escherichia coli. PloS one, 11(3), e0150984.
Yadav, M. K., Kwon, S. K., Cho, C. G., Park, S. W., Chae, S. W., & Song, J. J. (2012). Gene expression profile of early in vitro biofilms of Streptococcus pneumoniae. Microbiology and immunology, 56(9), 621-629.
Zainol, M. I., Mohd Yusoff, K., & Mohd Yusof, M. Y. (2013). Antibacterial activity of selected Malaysian honey. BMC complementary and alternative Medicine, 13(1), 1-10.