Al-Bakri, A.G., and Mahmoud, N.N., 2019. Photothermal-induced antibacterial activity of gold nanorods loaded into polymeric hydrogel against Pseudomonas aeruginosa biofilm. Molecules, 24(14): 2661.
https://doi.org/10.3390/molecules24142661
Al-kafaween, M.A., and Al-Jamal, H.A.N., 2022. A comparative study of antibacterial and antivirulence activities of four selected honeys to Manuka honey. Iranian Journal of Microbiology, 14(2): 238-251.
https://doi.org/10.18502/ijm.v14i2.9193
Al-Kafaween, M.A., Hilmi, A.B.M., Al-Jamal, H.A.N., Elsahoryi, N.A., Jaffar, N. and Zahri, M.K., 2020. Pseudomonas aeruginosa and Streptococcus pyogenes exposed to Malaysian trigona honey in vitro demonstrated downregulation of virulence factor. Iranian Journal of Biotechnology, 18(4): e2542.
Al-kafaween, M.A., Mohd Hilmi, A.B., Nagi Al-Jamal, H.A., Jaffar, N., Al-Sayyed, H. and Zahri, M.K. 2021. Effects of Selected Malaysian Kelulut Honey on Biofilm Formation and the Gene Expression Profile of Staphylococcus Aureus, Pseudomonas Aeruginosa and Escherichia Coli. Jordan Journal of Pharmaceutical Sciences, 14(1).
Al-kafaween, A.B.M.H., Hamid A.l.i and Nagi Al-Jamal., 2021. The Beneficial Effects of Stingless Bee Kelulut Honey Against Pseudomonas aeruginosa and Streptococcus pyogenes Planktonic and Biofilm. Tropical Journal of Natural Product Research, 5(10): 1788-1796.
https://doi.org/10.26538/tjnpr/v5i10.15
Al-kafaween, M.A., Hilmi, A.B.M., Al-Jamal, H.A.N., Al-Groom, R.M., Elsahoryi, N.A. and Al-Sayyed, H., 2021. Potential Antibacterial Activity of Yemeni Sidr Honey Against Pseudomonas aeruginosa and Streptococcus pyogenes. Anti-Infective Agents, 19(4): 51-65.
https://doi.org/10.2174/2211352519666210319100204
Al-kafaween, M.A., Mohd Hilmi, A.B., Jaffar, N., Al-Jamal, H.A.N., and Zahri, M.K., 2019. Determination of optimum incubation time for formation of Pseudomonas aeruginosa and Streptococcus pyogenes biofilms in microtiter plate. Bulletin of the National Research Centre, 43(1): 1-5.
https://doi.org/10.1186/s42269-019-0131-9
Al-kafaween, M.A., and Hilmi, A.B.M., 2022. Evaluation of the effect of different growth media and incubation time on the suitability of biofilm formation by Pseudomonas aeruginosa and Streptococcus pyogenes. Applied Environmental Biotechnology, 6(2): 19-26.
https://doi.org/10.26789/AEB.2021.02.003
Argudín, M.A., Mendoza, M.C., Martín, M.C., and Rodicio, M.R., 2014. Molecular basis of antimicrobial drug resistance in Staphylococcus aureus isolates recovered from young healthy carriers in Spain. Microbial pathogenesis, 74: 8-14.
https://doi.org/10.1016/j.micpath.2014.06.005
Bai, J., Wu, Y., Liu, X., Zhong, K., Huang, Y. and Gao, H., 2015. Antibacterial activity of shikimic acid from pine needles of Cedrus deodara against Staphylococcus aureus through damage to cell membrane. International Journal of Molecular Sciences, 16(11): 27145-27155.
https://doi.org/10.3390/ijms161126015
Capita, R. and Alonso-Calleja, C., 2013. Antibiotic-resistant bacteria: a challenge for the food industry. Critical reviews in food science and nutrition, 53(1): 11-48.
https://doi.org/10.1080/10408398.2010.519837
Chen, X., Li, Q., Wang, C., Xu, W., Han, L., Liu, Y. and Wang, J., 2016. Prognostic and diagnostic potential of isocitrate dehydrogenase 1 in esophageal squamous cell carcinoma. Oncotarget, 7(52): 86148.
https://doi.org/10.18632/oncotarget.13351
Djahmi, N., Messad, N., Nedjai, S., Moussaoui, A., Mazouz, D., Richard, J.-L. and Lavigne, J.-P., 2013. Molecular epidemiology of Staphylococcus aureus strains isolated from inpatients with infected diabetic foot ulcers in an Algerian University Hospital. Clinical Microbiology and Infection, 19(9): E398-E404.
https://doi.org/10.1111/1469-0691.12199
Flemming, H.-C., Wingender, J., Szewzyk, U., Steinberg, P., Rice, S.A. and Kjelleberg, S., 2016. Biofilms: an emergent form of bacterial life. Nature Reviews Microbiology, 14(9): 563-575.
https://doi.org/10.1038/nrmicro.2016.94
Fulaz, S., Vitale, S., Quinn, L., and Casey, E., 2019. Nanoparticle-biofilm interactions: the role of the EPS matrix. Trends in Microbiology, 27(11): 915-926.
https://doi.org/10.1016/j.tim.2019.07.004
Gebreyohannes, G., Nyerere, A., Bii, C., and Sbhatu, D.B., 2019. Challenges of intervention, treatment, and antibiotic resistance of biofilm-forming microorganisms. Heliyon, 5(8): e02192.
https://doi.org/10.1016/j.heliyon.2019.e02192
Gomes, F., Teixeira, P., Cerca, N., Ceri, H. and Oliveira, R., 2011. Virulence gene expression by Staphylococcus epidermidis biofilm cells exposed to antibiotics. Microbial Drug Resistance, 17(2): 191-196.
https://doi.org/10.1089/mdr.2010.0149
Guzman, J.D., 2014. Natural cinnamic acids, synthetic derivatives and hybrids with antimicrobial activity. Molecules, 19(12): 19292-19349.
https://doi.org/10.3390/molecules191219292
Hess, D.J., Henry-Stanley, M.J., and Wells, C.L., 2014. Antibacterial synergy of glycerol monolaurate and aminoglycosides in Staphylococcus aureus biofilms. Antimicrobial agents and chemotherapy, 58(11): 6970-6973.
https://doi.org/10.1128/AAC.03672-14
Huwaitat, R., Coulter, S.M., Porter, S.L., Pentlavalli, S. and Laverty, G., 2021. Antibacterial and antibiofilm efficacy of synthetic polymyxin‐mimetic lipopeptides. Peptide Science, 113(1): e24188.
https://doi.org/10.1002/pep2.24188
Jarrar, Y., Jarrar, Q., Abu-Shalhoob, M. and Sha'ban, E., 2019. Relative expression of mouse Udp-glucuronosyl transferase 2b1 gene in the livers, kidneys, and hearts: the influence of nonsteroidal anti-inflammatory drug treatment. Current Drug Metabolism, 20(11): 918-923.
https://doi.org/10.2174/1389200220666191115103310
Jarrar, Y.B., Jarrar, Q., Abaalkhail, S.J., Moh’d Kalloush, H., Naser, W., Zihlif, M. and Lee, S.J., 2022. Molecular toxicological alterations in the mouse hearts induced by sub‐chronic thiazolidinedione drugs administration. Fundamental & Clinical Pharmacology, 36(1): 143-149.
https://doi.org/10.1111/fcp.12694
Kaur, S., Harjai, K. and Chhibber, S., 2012. Methicillin-resistant Staphylococcus aureus phage plaque size enhancement using sublethal concentrations of antibiotics. Applied and Environmental Microbiology, 78(23): 8227-8233.
https://doi.org/10.1128/AEM.02371-12
Khan, F., Pham, D.T.N., and Kim, Y.-M., 2020. Alternative strategies for the application of aminoglycoside antibiotics against the biofilm-forming human pathogenic bacteria. Applied Microbiology and Biotechnology, 104(5): 1955-1976.
https://doi.org/10.1007/s00253-020-10360-1
Kranjec, C., Morales Angeles, D., Torrissen Mårli, M., Fernández, L., García, P., Kjos, M. and Diep, D. B. (2021). Staphylococcal biofilms: Challenges and novel therapeutic perspectives. Antibiotics, 10(2): 131.
https://doi.org/10.3390/antibiotics10020131
Kwiecinski, J.M., Jacobsson, G., Horswill, A.R., Josefsson, E. and Jin, T., 2019. Biofilm formation by Staphylococcus aureus clinical isolates correlates with the infection type. Infectious Diseases, 51(6): 446-451.
https://doi.org/10.1080/23744235.2019.1593499
Livak, K.J. and Schmittgen, T.D., 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. methods, 25(4): 402-408.
https://doi.org/10.1006/meth.2001.1262
Maddocks, S.E., Lopez, M.S., Rowlands, R.S., and Cooper, R.A., 2012. Manuka honey inhibits the development of Streptococcus pyogenes biofilms and causes reduced expression of two fibronectin binding proteins. Microbiology, 158(3): 781-790.
https://doi.org/10.1099/mic.0.053959-0
Manual, O.O.T., 2015. World Organization for Animal Health. Paris, France: 2017. Avian influenza (infection with avian influenza viruses), 1-23.
Moormeier, D.E., and Bayles, K.W., 2017. Staphylococcus aureus biofilm: a complex developmental organism. Molecular microbiology, 104(3): 365-376.
https://doi.org/10.1111/mmi.13634
Nassar, M.S., Hazzah, W.A., and Bakr, W.M., 2019. Evaluation of antibiotic susceptibility test results: how guilty a laboratory could be? Journal of the Egyptian Public Health Association, 94(1): 1-5.
https://doi.org/10.1186/s42506-018-0006-1
O'Neill, J., 2016. Tackling drug-resistant infections globally: final report and recommendations.
Qiao, Y.-l., Qian, J.-m., Wang, F.-r., Ma, Z.-y. and Wang, Q.-w., 2014. Butyrate protects liver against ischemia reperfusion injury by inhibiting nuclear factor kappa B activation in Kupffer cells. Journal of Surgical Research, 187(2): 653-659.
https://doi.org/10.1016/j.jss.2013.08.028
Resch, A., Rosenstein, R., Nerz, C. and Götz, F., 2005. Differential gene expression profiling of Staphylococcus aureus cultivated under biofilm and planktonic conditions. Applied and environmental microbiology, 71(5): 2663-2676.
https://doi.org/10.1128/AEM.71.5.2663-2676.2005
Roberts, A.E., Maddocks, S.E. and Cooper, R.A., 2012. Manuka honey is bactericidal against Pseudomonas aeruginosa and results in differential expression. Microbiology, 158(12): 3005-3013.
https://doi.org/10.1099/mic.0.062794-0
Rodríguez-Melcón, C., Alonso-Calleja, C., García-Fernández, C., Carballo, J., & Capita, R., 2021. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) for twelve antimicrobials (biocides and antibiotics) in eight strains of listeria monocytogenes. Biology, 11(1): 46.
https://doi.org/10.3390/biology11010046
Saising, J., Dube, L., Ziebandt, A.-K., Voravuthikunchai, S. P., Nega, M. and Götz, F., 2012.
Activity of gallidermin on Staphylococcus aureus and Staphylococcus epidermidis biofilms. Antimicrobial agents and chemotherapy, 56(11): 5804-5810.
https://doi.org/10.1128/AAC.01296-12
Schmittgen, T.D. and Livak, K.J., 2008. Analyzing real-time PCR data by the comparative C T method. Nature protocols, 3(6): 1101.
https://doi.org/10.1038/nprot.2008.73
Shin, H.-J., Yang, S. and Lim, Y., 2021. Antibiotic susceptibility of Staphylococcus aureus with different degrees of biofilm formation. Journal of Analytical Science and Technology, 12(1): 1-7.
https://doi.org/10.1186/s40543-021-00294-2
Shrestha, L.B., Baral, R., and Khanal, B., 2019. Comparative study of antimicrobial resistance and biofilm formation among Gram-positive uropathogens isolated from community-acquired urinary tract infections and catheter-associated urinary tract infections. Infection and drug resistance, 12: 957.
https://doi.org/10.2147/IDR.S200988
Silva, V., Almeida, L., Gaio, V., Cerca, N., Manageiro, V., Caniça, M. and Poeta, P., 2021. Biofilm formation of multidrug-resistant MRSA strains isolated from different types of human infections. Pathogens, 10(8): 970.
https://doi.org/10.3390/pathogens10080970
Tahaei, S.A.S., Stájer, A., Barrak, I., Ostorházi, E., Szabó, D. and Gajdács, M., 2021. Correlation between biofilm-formation and the antibiotic resistant phenotype in Staphylococcus aureus isolates: a laboratory-based study in Hungary and a review of the literature. Infection and drug resistance, 14: 1155.
https://doi.org/10.2147/IDR.S303992
Tarawneh, O., Alwahsh, W., Abul-Futouh, H., Al-Samad, L.A., Hamadneh, L., Abu Mahfouz, H., and Fadhil Abed, A., 2021. Determination of Antimicrobial and Antibiofilm Activity of Combined LVX and AMP Impregnated in p (HEMA) Hydrogel. Applied Sciences, 11(18): 8345.
https://doi.org/10.3390/app11188345
Tarawneh, O., Hamadneh, I., Huwaitat, R., Al-Assi, A.R., and El Madani, A., 2021. Characterization of chlorhexidine-impregnated cellulose-based hydrogel films intended for the treatment of periodontitis. BioMed Research International, 20-21
https://doi.org/10.1155/2021/9853977
Van Eldere, J., Vermeersch, P., Van Pelt, K., Verhaegen, J., Kocsis, E., Lagler, H. and Nagy, K. R2245 Comparison of Austrian, Hungarian and Macedonian meticillin-resistant and meticillin-sensitive Staphylococcus aureus strains in relation to accessory gene regulator type.
Wasfi, R., Abd El-Rahman, O., Mansour, L., Hanora, A., Hashem, A. and Ashour, M., 2012. Antimicrobial activities against biofilm formed by Proteus mirabilis isolates from wound and urinary tract infections. Indian journal of medical microbiology, 30(1): 76-80.
https://doi.org/10.4103/0255-0857.93044
Wasfi, R., Elkhatib, W. F. and Khairalla, A. S., 2016. Effects of selected Egyptian honeys on the cellular ultrastructure and the gene expression profile of Escherichia coli. PloS one, 11(3): e0150984.
https://doi.org/10.1371/journal.pone.0150984
Wojnicz, D. and Tichaczek-Goska, D., 2013. Effect of sub-minimum inhibitory concentrations of ciprofloxacin, amikacin and colistin on biofilm formation and virulence factors of Escherichia coli planktonic and biofilm forms isolated from human urine. Brazilian Journal of Microbiology, 44(1): 259-265.
https://doi.org/10.1590/S1517-83822013000100037
Yadav, M.K., Kwon, S.K., Cho, C.G., Park, S.W., Chae, S.W. and Song, J.J., 2012. Gene expression profile of early in vitro biofilms of Streptococcus pneumoniae. Microbiology and immunology, 56(9): 621-629.
https://doi.org/10.1111/j.1348-0421.2012.00483.x
Yarbrough, M.L., Lainhart, W. and Burnham, C.-A.D., 2018. Epidemiology, clinical characteristics, and antimicrobial susceptibility profiles of human clinical isolates of Staphylococcus intermedius group. Journal of clinical microbiology, 56(3): e01788-01717.
https://doi.org/10.1128/JCM.01788-17
Zulkhairi Amin, F.A., Sabri, S., Mohammad, S.M., Ismail, M., Chan, K.W., Ismail, N. and Zawawi, N., 2018. Therapeutic properties of stingless bee honey in comparison with european bee honey. Advances in Pharmacological Sciences, 18-20.
https://doi.org/10.1155/2018/6179596