A thermophilic nitrate-reducing bacterium isolated from production water of a high temperature oil reservoir and its inhibition on sulfate-reducing bacteria

VIEWS - 948 (Abstract) 279 (PDF)
Jin-Feng Liu, Wei-Lin Wu, Feng Yao, Biao Wang, Bing-Liang Zhang, Serge Maurice Mbadinga, Ji-Dong Gu, Bo-Zhong Mu

Abstract


A thermophilic spore-forming facultative anaerobic bacterium, designated as Njiang2, was isolated from the production water of a high temperature oil reservoir (87°C). The physiological, biochemical and 16S rRNA gene based phylogenetic analysis indicated that Njiang2 belonged to the genus Anoxybacillus. Njiang2 could significantly inhibit H2S production when co-cultured with Desulfotomaculum sp under laboratory conditions, which implied its great potential in mitigation of brine souring in the oil reservoir and in control of biocorrosion caused by sulfate-reducing bacteria. As far as we know, this might be the first report of Anoxybacillus sp. isolated from high temperature oilfield

Keywords


Anoxybacillus; thermophilic; 16S rRNA gene analysis; nitrate-reducing bacterium;souring mitigation; mi-crobial influenced corrosion

Full Text:

PDF

References


Telang A J, Ebert S, Foght J M, et al. 1997, Effect of nitrate injection on the microbial community in an oil field as monitored by reverse sample genome probing. Applied And Environmental Microbiology, vol.63(5): 1785–1793. http://dx.doi.org/10.1038/sj.jim.7000142.

Telang A J, Jenneman G E and Voordouw G, 1999, Sulfur cycling in mixed cultures of sulfide-oxidizing and sulfate- or sulfur-reducing oil field bacteria. Canadian Journal of Microbiology, vol.45(11): 905–913. http://dx.doi.org/10.1139/w99-096.

Jenneman G E, Moffitt P D, Bala G A, et al. 1999, Sulfide removal in reservoir brine by indigenous bacteria. Spe Production & Facilities, vol. 14(3): 219–225. http://dx.doi.org/10.2118/57422-PA.

Nemati M, Mazutinec T J, Jenneman G E, et al. 2001, Control of biogenic H2S production with nitrite and molybdate. Journal of Indian Microbiology and Biotechnology, vol.26(6): 350–355. ttp://dx.doi.org/10.1038/sj.jim.7000142.

Eckford R E and Fedorak P M, 2002, Chemical and microbiological changes in laboratory incubations of nitrate amendment “sour” produced waters from three western Canadian oil fields. Journal of Indian Microbiology and Biotechnology, vol.29(5): 243–254. http://dx.doi.org/10.1038/sj.jim.7000304.

Eckford R E and Fedorak P M, 2002, Planktonic nitrate-reducing bacteria and sulfate-reducing bacteria in some western Canadian oil field waters. Journal of Indian Microbiology and Biotechnology, vol.29(2): 83–92. http://dx.doi.org/10.1038/sj.jim.7000274.

Greene EA, Hubert C, Nemati M, et al. 2003, Nitrite reductase activity of sulphate-reducing bacteria prevents their inhibition by nitrate-reducing, sulphide-oxidiz-ing bacteria. Environmental Microbiology, vol.5(7): 607– 617. http://dx.doi.org/10.1046/j.1462-2920.2003.00446.x.

Hubert C, Nemati M, Jenneman G, et al. 2003, Containment of biogenic sulfide production in continuous up-flow packed-bed bioreactors with nitrate or nitrite, Biotechnology Progress, vol.19(2): 338–345. http://dx.doi.org/10.1021/bp020128f.

Hubert C and Voordouw G, 2007, Oil field souring control by nitrate-reducing Sulfurospirillum spp. that out-compete sulfate-reducing bacteria for organic electron donors. Applied and Environmental Microbiology, vol.73(8): 2644–2652. http://dx.doi.org/10.1128/aem.02332-06.

Grigoryan A A, Cornish S L, Buziak B, et al. 2008, Competitive oxidation of volatile fatty acids by sulfate- and nitrate-reducing bacteria from an oil field in Argentina. Applied and Environmental Microbiology, vol.74(14): 4324–4335. http://dx.doi.org/10.1128/aem.00419-08.

Nazina T N, Tourova T P, Poltaraus A B, et al. 2001, Taxonomic study of aerobic thermophilic bacilli: descriptions of Geobacillus subterraneus gen. nov., sp nov and Geobacillus uzenensis sp nov from petroleum reservoirs and transfer of Bacillus stearothermophilus, Bacillus thermocatenulatus, Bacillus thermoleovorans, Bacillus kaustophilus, Bacillus thermoglucosidasius and Bacillus thermodenitrificans to Geobacillus as the new combinations G-stearothermophilus, Gthermocatenulatus, G-thermoleovorans, G-kaustophilus, G-thermoglu-cosidasius and G-thermodenitrificans. International Journal of Systematic and Evolutionary Microbiology, vol. 51433–51446. http://dx.doi.org/10.1099/00207713-51-2-433.

Greene A D, Patel B K C and Sheehy A J, 1997, Deferribacter thermophilus gen. nov., sp. nov., a novel thermophilic manganese- and iron-reducing bacterium isolated from a petroleum reservoir. International Journal of Systematic Bacteriology, vol.47(2): 505–509. http://dx.doi.org/10.1099/00207713-47-2-505.

Rees G N, Patel B K C, Grassia G S, et al. 1997, Anaerobaculum thermoterrenum gen. nov., sp. nov., a novel, thermophilic bacterium with ferments citrate. International Journal of Systematic Bacteriology, vol.47(1): 150–154. http://dx.doi.org/10.1099/00207713-47-1-150.

Huu NB, Denner EBM, Ha DTC, et al. 1999, Marinobacter aquaeolei sp. nov., a halophilic bacterium isolated from a Vietnamese oil-producing well. International Journal of Systematic Bacteriology, vol.49: 367–375. http://dx.doi.org/10.1099/00207713-49-2-367.

Myhr S, Lillebo B L P, Sunde E, et al. 2002, Inhibition of microbial H2S production in an oil reservoir model column by nitrate injection. Applied Microbiology and Biotechnology, vol.58(3): 400–408. http://dx.doi.org/10.1007/s00253-001-0881-8.

Miranda-Tello E, Fardeau M L, Sepulveda J, et al. 2003, Garciella nitratireducens gen. nov., sp nov., an anaerobic, thermophilic, nitrate-and thiosulfate-reducing bacterium isolated from an oilfield separator in the Gulf of Mexico. International Journal of Systematic and Evolutionary Microbiology, vol.53(5): 1509–1514. http://dx.doi.org/10.1099/ijs.0.02662-0.

Kumaraswamy R, Ebert S, Gray M R, et al. 2011, Molecular- and cultivation-based analyses of microbial communities in oil field water and in microcosms amended with nitrate to control H2S production. Applied Microbiology and Biotechnology, vol.89(6): 2027–2038. http://dx.doi.org/10.1007/s00253-010-2974-8.

Feng W W, Liu J F, Gu J D, et al. 2011, Nitrate-reducing community in production water of three oil reservoirs and their responses to different carbon sources revealed by nitrate-reductase encoding gene (napA), International Biodeterioration & Biodegradation, vol. 65(7): 1081–1086. http://dx.doi.org/10.1016/j.ibiod.2011.05.009.

Wang L-Y, Gao C-X, Mbadinga S M, et al. 2011, Characterization of an alkane-degrading methanogenic enrichment culture from production water of an oil reservoir after 274 days of incubation. International Biodeterioration & Biodegradation, vol.65(3): 444–450.

http://dx.doi.org/10.1016/j.ibiod.2010.12.010.

Shen P, Fan X-R and Li G-W, 1999, Microbiology Experiment. High Education Press, Beijing.

Baek S H, Im W T, Oh H W, et al. 2006, Brevibacillus ginsengisoli sp nov., a denitrifying bacterium isolated from soil of a ginseng field. International Journal of Systematic Evolutionary and Microbiology, vol.56(11): 2665–2669. http://dx.doi.org/10.1099/ijs.0.64382-0.

Marmur J and Doty P, 1962, Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. Journal of Molecular Biology, vol.5(1): 109–118. http://dx.doi.org/10.1016/S0022-2836(62)80066-7.

Cline J D, 1969, Spectrophotometric determination of hydrogen sulfide in natural waters. Limnology and Oceanography, vol.14(3): 454–458. http://dx.doi.org/10.4319/lo.1969.14.3.0454.

Flores A R, Parsons L M and Pavelka M S, 2005, Genetic analysis of the β-lactamases of Mycobacterium tuberculosis and Mycobacterium smegmatis and susceptibility to β-lactam antibiotics. Microbiology, vol.151(2): 521–532. http://dx.doi.org/10.1099/mic.0.27629-0.

Poli A, Romano I, Cordella P, et al. 2009, Anoxybacillus thermarum sp nov., a novel thermophilic bacterium isolated from thermal mud in Euganean hot springs, Abano Terme, Italy. Extremophiles, vol.13(6): 867–874. http://dx.doi.org/10.1007/s00792-009-0274-y.

Cihan A C, Ozcan B and Cokmus C, 2011, Anoxybacillus salavatliensis sp. nov., an α-glucosidase producing, thermophilic bacterium isolated from Salavatli, Turkey, Journal of Basic Microbiology, vol.51(2): 136–146. http://dx.doi.org/10.1002/jobm.201000115.

Belduz A O, Dulger S and Demirbag Z, 2003, Anoxybacillus gonensis sp nov., a moderately thermophilic, xylose-utilizing, endospore-forming bacterium. International Journal of Systematic Evolution and Microbiology, vol.53(5): 1315–1320. http://dx.doi.org/10.1099/ijs.0.02473-0.

Kevbrin V V, Zengler K, Lysenko A M, et al. 2005, Anoxybacillus kamchatkensis sp nov., a novel thermophilic facultative aerobic bacterium with a broad pH optimum from the Geyser valley, Kamchatka. Extremophiles, vol.9(5): 391–398. http://dx.doi.org/10.1007/s00792-005-0479-7.

Gieg L, Jack T and Foght J, 2011, Biological souring and mitigation in oil reservoirs. Applied Microbiology and Biotechnology, vol.92(2): 263–282. http://dx.doi.org/10.1007/s00253-011-3542-6.

Jenneman G and Gevertz D, 1997, Sulfide-oxidizing bacteria, US Patent 5,686,293.




DOI: http://dx.doi.org/10.18063/AEB.2016.02.004

Refbacks

  • There are currently no refbacks.


Copyright (c) 2016 Jin-Feng Liu, Wei-Lin Wu, Feng Yao, Biao Wang, Bing-Liang Zhang, Serge Maurice Mbadinga, Ji-Dong Gu, Bo-Zhong Mu

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.