

Storm Clouds Platform: a cloud computing platform for smart city applications. © 2016 Marco Battarra, et al. This is an Open Access article distri-
buted under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-
nc/4.0/), permitting all non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
14

RESEARCH ARTICLE

Storm Clouds Platform: a cloud computing platform
for smart city applications
Marco Battarra, Marco Consonni*, Samuele De Domenico and Andrea Milani
Hewlett Packard Italiana S.R.L., 9, Via Di Vittorio Giuseppe – 20063 Cernusco Sul Naviglio, Italy

Abstract: This paper describes our work on STORM CLOUDS[1], a project with the main objective of migrating
smart-city services, that Public Authorities (PAs) currently provided using traditional Information Technology, to a
cloud-based environment. Our organization was in charge of finding the technical solutions, so we designed and im-
plemented a cloud computing solution called Storm Clouds Platform (SCP), for that purpose. In principle, the applica-
tions we ported could run on a public-cloud service, like Amazon Web ServicesTM[2] or Microsoft® Azure[3], that pro-
vide computational resources on a pay-per-use paradigm. However, these solutions have disadvantages due to their
proprietary nature: vendor lock-in is one of the issues but other serious problems are related to the lack of full control on
how data and applications are processed in the cloud. As an example, when using a public cloud, the users of the cloud
services have very little control on the location where applications run and data are stored, if there is any. This is identi-
fied as one of the most important obstacles in cloud computing adoption, particularly in applications manage personal
data and the application provider has legal obligation of preserving end user privacy[4]. This paper explains how we
faced the problem and the solutions we found. We designed a cloud computing platform — completely based on
open-software components — that can be used for either implementing private clouds or for porting applications to
public clouds.
Keywords: smart city, cloud computing, infrastructure as service, OpenStack

*Correspondence to: Marco Consonni, Hewlett Packard Italiana S.R.L., 9, Via Di Vittorio Giuseppe – 20063 Cernusco Sul Naviglio, Italy;
Email: marco.consonni@hpe.com

Received: February 3, 2016; Accepted: April 12, 2016; Published Online: May 9, 2016
Citation: Battarra M, Consonni M, De Domenico S, et al. 2016, Storm Clouds Platform: a cloud computing platform for smart city
applications. Journal of Smart Cities, vol.2(1): 14–25. http://dx.doi.org/10.18063/JSC.2016.01.003.

1. Introduction

loud computing is a delivery model for tech-
nology enabled services that drives greater
agility, speed and cost savings. It provides

on-demand access, via a network, to an elastic pool of
shared computing resources (e.g., services, applica-
tions, frameworks, platforms, servers, storage, and
networks) that can be rapidly provisioned and released
with minimal service provider interaction and scaled
as needed according to a pay-per-use paradigm.

We recently participated in STORM CLOUDS, a
project partially funded by the European Commission

within the 7th Framework Program (Grant Agreement
No. 621089) with the main objective of deploying
smart-cities application services to a cloud-based en-
vironment. In the project, we were in charge of de-
signing and implementing the technical solutions tak-
ing into account some general but fundamental re-
quirements:
 the tools used to port and/or deploy the applica-

tions should be based on open source technology
in order to avoid vendor lock-in issues,

 the solution was required to support different de-
ployment models ranging from situations in
which the applications run on data-centers owned

C

http://dx.doi.org/10.18063/JSC.2016.01.003�

Marco Battarra, Marco Consonni, Samuele De Domenico, et al.

 Journal of Smart Cities (2016)–Volume 2, Issue 1 15

by PAs, to scenarios in which they run on a pub-
lic cloud, made available by some cloud service
provider,

 the solution should support the implementation
of a catalogue of easily deployable applications:
the idea was that any ported application could be
reused by PAs not directly participating in the
project.

This article briefly describes the experience gained
while working on the project, illustrating the problem
and the solution found. Storm Clouds Platform (SCP)
was the platform we implemented and this article bri-
efly describes the functions it implements and the ar-
chitecture.

2. The Problem

In order to find a solution for the generic problem of
“porting applications to cloud”, first we tried to un-
derstand the problem better, focusing on two aspects:
the project context and the applications to port.

2.1 Project Context

We started by identifying the “entities” (e.g., organi-
zations, users, other systems, etc.) participating in the
project and/or interacting with applications to port.
Figure 1 summarizes what we found out.

As reported[1], we needed a ‘digital space’ for run-
ning application services and, as required by the cloud

computing paradigm, the resources for running them
should be activated on-demand. We called this digital
space Storm Clouds Platform (SCP).

Analyzing the applications, we found that they could
inter-operate with each-other and/or with External Dig-
ital Services in order to achieve the required functio-
nality. For instance, several applications used Google
Maps[5], a service available on Internet through a web
service interface, for rendering maps on HTML pages.
Citizens and/or public servants were identified as the
End Users of the applications while Public Adminis-
trations (e.g., municipalities) were the Application
Providers, responsible for providing services to citi-
zens. Application Creators were the organizations in
charge of implementing the applications. We found
that usually Independent Software Vendors (ISVs) cover
this role but, in some cases, the Application Provider
is also the Application Creator (e.g., a municipality
might also be the creator of the application). Generally,
it was important to distinguish these two roles because,
while application creators are usually interested in the
technical details for porting applications to a cloud
environment, application providers give more impor-
tance to aspects like the cost of the solution, the eco-
nomic benefits, whether data are processed according
to regulations (e.g., if and how security/privacy prob-
lems are addressed), etc.

In the project, we played the role of the Platform
Provider, in charge of designing, implementing and

Figure 1. STORM CLOUDS project context.

Storm Clouds Platform: a cloud computing platform for smart city applications

16 Journal of Smart Cities (2016)–Volume 2, Issue 1

operating the SCP. We decided to engage an Infra-
structure Provider for supplying the physical resources
(e.g., physical servers, disk storage and network con-
nectivity) for hosting the platform and the applications.
The distinction between these two roles, in addition
to being useful for the project because it was not ne-
cessary to make an up-front investment for the physi-
cal resources, was also aligned with the general re-
quirement of providing a solution that could be dep-
loyed on-premises (i.e., on the municipality’s data
centre), off-premises (i.e., a data centre of a third party)
or even using services of a public cloud operator. In
fact, after the project termination, PAs could decide to
implement the solution at their own data centres, use a
data centre of a third party or even deploy the applica-
tions on a public cloud.

2.2 Application Services

The applications were selected from a set of com-
pletely implemented smart-city services that the part-
ners developed in previous projects. We conducted an
assessment for gathering information that served as
requirements for the platform. We asked the applica-
tion proponents to give technical details on their ap-
plications in order to characterize the kind of work-
load we should support. Table 1 summarizes the re-
sults of the assessment.

Most of the applications were implemented using
open source products at different levels (e.g., Linux
operating system; MySQL/MariaDB or PostgreSQL
databases; PHP, Python, Java and JavaScript pro-
gramming languages, etc.), whilst few were based

Table 1. Application assessment results

Note: (*) Linux stands for any Linux distribution.

Marco Battarra, Marco Consonni, Samuele De Domenico, et al.

 Journal of Smart Cities (2016)–Volume 2, Issue 1 17

on proprietary technologies such as Oracle DBMS,
Windows Server 2008, etc. The steering committee of
the project decided to port only applications based on
open source software packages, in order to be sure that
the act of “porting the application to cloud” did not
constitute an infringement of the licensing rights when
the application was activated.

During the assessment we also found out that some
applications managed sensitive information like, for
example, citizens’ personal data. This was a very im-
portant aspect with implications both on the applica-
tions to migrate during the project and the solution we
designed. In fact, the Application Providers had the
legal responsibility of preserving citizens’ privacy[4]
and — although during the project some activities
were addressed to verify the application security —
they preferred to migrate services that did not manage
sensitive information. Application Providers were not
in the position of fully controlling the way data was
managed because, as described above, all the applica-
tions were to run on servers made available by the
Infrastructure Provider, an organization external to the
project. However, the Application Owners required
that the solution could be hosted on any data centre so
that, after the project termination, there would have
the possibility of creating a Storm Clouds Platform ins-
tance at their own premise. As a result, we had to fulfill
the requirement of defining a solution that could be
implemented both on-premises and off-premises.

2.3 High-level Requirements

The analysis of the project context and the results of
the application assessment can be briefly summarized
in a list of high-level requirements.
• Open Source Technology: the solution should be

implemented using open source software pack-
ages for avoiding vendor lock-in issues and for
controlling the cost of the porting. This was also
in accordance with the indications of the Euro-
pean Commission (EC) that “supports Free/Open
Source Software (FOSS) as a development model
since it is a very effective way to collaboratively
develop software with fast take-up and improve-
ment cycles” [6].

• LAMP Workload: the solution should support
and facilitate the porting of LAMP applications.
According to a broadly accepted definition[7], “The
acronym LAMP refers to first letters of the four
components of a solution stack, composed en-
tirely of free and open-source software, suitable

for building high-availability heavy-duty dyna-
mic web sites”. The meaning of the LAMP acro-
nym depends on which specific components are
used as parts of the actual bundle. In the case of
the project, “L” stands for Linux; “A” for Apache
HTTP Web Server; “M” identifies MySQL, Ma-
riaDB or MongoDB, the database management
system; “P” is for PHP or Python, the program-
ming languages used for dynamic web pages and
web development1

• Deployment Models: the solution should sup-
port various cloud computing deployment mod-
els like Private Cloud in which “the cloud infra-
structure is provisioned for exclusive use by a
single organization”[

.

8] (this is the case in which a
municipality has its own data centre, Community
Cloud in which “the cloud infrastructure is provi-
sioned for exclusive use by a specific community
of consumers from organizations that have shared
concerns”[8] (when, for example, all the munici-
palities use a single cloud provided at the Na-
tional level) and Public Cloud in which “the cloud
infrastructure is provisioned for open use by the
general public”[8].

• Management: the solution should implement
tools for managing the applications and the com-
ponents of the solution itself. In this area, the re-
quirement was directed to tools for administering,
monitoring and automating the deployment of the
services.

3. The Solution

Figure 2 shows the logical architecture of the Storm
Clouds Platform (SCP), i.e., the solution we designed
for the project.

SCP is a layered architecture in which the Infra-
structure as a Service Layer (IaaS Layer) works as the
foundation of the whole solution. IaaS Layer pro-
vides basic IT capabilities as compute services (e.g.,
Virtual Machines), storage services (e.g., Virtual Vo-
lumes) and networking services (e.g., Virtual Net-
works) for the implementation of the upper layers.

Definitely the IaaS layer should be run on some
physical resources, such as servers, disks and network
equipment that are represented by the Hardware Layer.
This layer is implemented by the hardware of the data

1 As described in the following pages, the architecture we designed
also supports PostgreSQL database management system and other
programming languages like Java, Perl and Ruby.

Storm Clouds Platform: a cloud computing platform for smart city applications

18 Journal of Smart Cities (2016)–Volume 2, Issue 1

Figure 2. Storm Clouds Platform architecture.

centre(s) where the platform is hosted and was consi-
dered out of scope. The only requirement for the
Hardware Layer is that the servers are equipped with
an Operating System supporting OpenStack 2

The platform supports the Applications in two al-
ternative ways: as Application VMs activated at the
IaaS Layer for running the application logic or as Ap-
plication Containers hosted by the platform as a Ser-
vice Layer (PaaS Layer). There are pros and cons for
these two alternative approaches, as described in fol-
lowing sections of this article; we decided to imple-
ment both in order to have a more flexible solution.

, the
software solution we selected for implementing the
IaaS Layer.

While analysing the Applications we observed
common functions that we ‘factored-out’ and support
at the platform level. The Data Service Layer imple-
ments database and file sharing functionality, while
the Access Layer manages the requests coming from
the end users of the applications.

Finally, SCP provides Administration Tools for
monitoring and managing the resources (i.e., services
and applications) activated in the platform.

3.1 Infrastructure as a Service Layer

The Infrastructure as a Service Layer provides servic-
es for creating virtual resources (like virtual machines,

2 Possible distributions are Debian 7.0, openSUSE, SUSE Linux
Enterprise Server, Red Hat Enterprise Linux, CentOS, Fedora and
Ubuntu 12.04/14.04 (LTS).

virtual disks and virtual networks) used instead of
their physical counterparts, for deploying and running
application software. Resources are provided as ser-
vices, meaning that they are ‘created’ when needed,
used to run applications, and ‘removed’ when the ap-
plication is not needed anymore. The actual computa-
tion happen at the physical level but physical re-
sources and applications are not tightly bound together.
This makes it easier to reuse the physical infrastruc-
ture for several purposes, usually at different times.
This is obtained with the extensive use of virtualiza-
tion technology[9] that is part of the IaaS Layer.

For the implementation of the IaaS Layer, we sele-
cted OpenStack[10], an open source technology (all sou-
rce code is freely available under the Apache 2.0 lic-
ense). The main reason for selecting this technology
was because it was the most popular and most adopted
open source IaaS solution[11].

Figure 3 shows the OpenStack high-level logical
architecture. OpenStack is composed of the following
modules mapping the fundamental IaaS services:
 Nova provides computation services (Virtual

Machines);
 Neutron provides networking services (Virtual

Networks);
 Cinder provides block storage services (Virtual

Disks);
 Swift implements object storage services (Files);
 Horizon provides a web front-end for managing and

controlling the resources allocated in the cloud;

Marco Battarra, Marco Consonni, Samuele De Domenico, et al.

 Journal of Smart Cities (2016)–Volume 2, Issue 1 19

Figure 3. OpenStack logical architecture.

 Glance implements a catalogue for storing virtual
machine images;

 Keystone implements authentication and au-
thorization functions;

 Heat uses the other components for orchestrating
the creation/deletion of virtual resource groups
described by script files called “stacks”;

 Ceilometer monitors the usage of resources for
metering and accounting purposes.

In principle, the IaaS Layer could be sufficient for
deploying any application we assessed. We could ac-
tivate a virtual machine, install all the required soft-
ware packages and run the application. This situation
is described by Figure 4.

This scenario, albeit supported by the platform, does
not address some important issues of a production-
ready situation. What happens if a VM is switched off
accidentally or voluntary (for example for mainten-
ance reasons)? What if a single machine is not enough
for handling the requests of an increased number of
users? In other words, how do we address high-ava-
ilability and scalability issues?

Figure 4. Deploying applications on IaaS.

In addition, from a functional perspective, the es-
sence of an application is represented by the business
logic it implements (the part in grey), while functions
like HTTP traffic management and data management
(e.g., database management) are common to all appli-
cations. We decided to implement them at the platform
level and make them available as services, in order to

Storm Clouds Platform: a cloud computing platform for smart city applications

20 Journal of Smart Cities (2016)–Volume 2, Issue 1

facilitate the application deployment. Following these
ideas, we thought of ‘decoupling’ the three levels of
the application stack (namely, the HTTP Front End
(HTTP FE), the Application logic and the data man-
agement) and provide the HTTP FE functions and the
data management functions at SCP level. In addition,
we considered that several applications could benefit
from Platform-as-a-Service solutions specifically de-
signed for LAMP stacks. As a result, we envisioned
the solution shown in Figure 5.

All the layers were implemented using VMs acti-
vated at the IaaS Layer level and implement high-ava-
ilability and scalability, enabling the implementation
of similar features for the application services3

While working directly at the IaaS layer provides
great flexibility and full control, the PaaS layer pro-
vides a convenient alternative that facilitates the dep-
loyment of applications by ‘hiding’ the complexity of
the underlying infrastructure. In fact, the application
developer does not explicitly activate VMs for run-
ning her applications; she just uploads software pack-
ages to the PaaS Layer that takes care of activating the
computing resources on her behalf. Furthermore, the
PaaS can handle scalability and high-availability au-
tomatically when applications are designed properly.

.

Figure 5. Decoupling the application stack.

3 High availability and scalability of an application can be obtained
only when all the layers support such features, application layer in-
cluded. For this reason, we cannot claim that their implementation at
the Access and the Data Service Layer is sufficient; it also depends on
how the application is designed.

In this perspective, SCP enables different application
migration options summarized in the Table 2.

The following sections describe the layers built on
top of the IaaS Layer in greater details.

3.2 Data Service Layer

The applications that analyzed store structured data in
a database and use a file system for unstructured data
like images, music and videos. As mentioned above,
one of the objectives of the Data Service Layer is to
provide mechanisms for implementing H/A; therefore
two or more VMs — hosting the business logic of an
application — should be able to share data so that, in
case one VM becomes unavailable, the other(s) can
continue the service.

For these reasons Data Service Layer implements
both database and file sharing functions with two sub-
components: the Database Services Module, imple-
menting database functions, and the File Sharing Ser-
vices Module, providing file server functionality. They
are both deployed on VM clusters and implement
high-availability and scalability.

At the time of writing, the Database Service Module
supports MySQL/MariaDB and PostgreSQL database
engines; it is deployed as an active/stand-by VM clus-
ter but the architecture supports also other deployment
topologies4 12, such as active/active, N+M, N-to-N, etc.[]

The File Sharing Service Module is implemented as
a cluster of VMs hosting Gluster[13], a scale-out net-
work-attached storage file system. Gluster implements
a client/server architecture in which the servers are
aggregated into one large parallel network file system;
while clients, equipped with the Gluster client soft-
ware package, mount shared volumes that are seen as
local file systems.

The Data Service Layer provides each application
with a private database and a private volume but mul-
tiple VMs of an application can share the same data
allowing the implementation of H/A and scalability.

3.3 Access Layer

The Access Layer implements the HTTP Front End for
web based services. It receives HTTP requests directed
to applications and, having knowledge of what VMs
host the required service, dispatches the request accor-
dingly, trying to balance the traffic among all the VMs.
In addition, it continuously monitors the availability

4 The topology of a cluster defines how many nodes are used and/or
how the work is distributed among them. For more information see[12].

Marco Battarra, Marco Consonni, Samuele De Domenico, et al.

 Journal of Smart Cities (2016)–Volume 2, Issue 1 21

Table 2. Migration options

Option Description Pros Cons

Full IaaS All the application components are
deployed on VM(s) explicitly ma-
naged by the application owner

- No architectural change of the
application

- Full control on the resources used
for the deployment

- Great deployment complexity beca-
use the application owner must take
care of installing and configuring
all the components for H/A and
scalability

IaaS + Data Service Layer +
Access Layer (optional)

Data management and (optionally)
HTTP traffic management are dele-
gated to the platform while the appli-
cation business logic is still deployed
on VM(s)

- No architectural change of the
application

- Less deployment complexity be-
cause the application owner ‘leve-
rages’ the high-available and scala-
ble features of the platform layers

- Because of the centralized adminis-
tration of the shared functions (e.g.
data service layer), application
owners cannot deploy their applica-
tions in full autonomy

PaaS + Data Service Layer Applications are hosted by the PaaS
Layer and use the Data Service Layer
for storing data

- No infrastructure management req-
uired by the user: the platform does
it for her

- Applications can require significant
changes to comply with PaaS prin-
ciples

of the VMs and, in case one of them becomes un-
available, redistributes the traffic among the remain-
ing ones.

The Access Layer implements the Load Balancer Mo-
dule based on the open source HAProxy software[14]
and is implemented as a set of VMs deployed ‘in front’
of the VMs hosting the applications, as described in
Figure 6.

The HAProxy VMs receive the HTTP request and
dispatch it to the Application VMs distributing the
workload according to a load balancing algorithm. In
addition, HAProxy VMs periodically monitor the Ap-

plication VMs and, in case a VM appears unavailable,
redistribute the upcoming requests to the remaining
ones. As shown in Figure 6, HAProxy can be dep-
loyed on several VMs (in the picture we have a two
VM cluster) implementing H/A.

3.4 Platform as a Service Layer

The Platform as a Service Layer (PaaS Layer) is a sop-
histicated solution that allows developers to deploy th-
eir web applications to the cloud, without having to take
care of the underlying infrastructure. In fact, while
IaaS Layer focuses on managing the fundamental

Figure 6. Load balancer module (HAProxy).

Storm Clouds Platform: a cloud computing platform for smart city applications

22 Journal of Smart Cities (2016)–Volume 2, Issue 1

infrastructure building blocks in a cloud environment,
thus allowing the transfer any existing deployment to
the cloud with little or no architectural changes, PaaS
Layer goes one step further and focuses on managing
applications instead of infrastructure. The developer
who can deploy an application to the PaaS and expects
it to perform, delegates all infrastructure management
tasks to the PaaS and focuses on development work
instead. As a consequence, the primary resources in-
volved in deploying an application to a PaaS are not
virtual machines, virtual storage and virtual network
objects, but application services, configuration and
artifacts, as shown in Figure 7.

The picture shows that the PaaS Layer uses re-
sources (mainly VMs) provided by the IaaS Layer
‘hiding’ the correspondent complexity. Programmers
can deploy scalable and highly available applications
without requiring advanced infrastructure skills because
the PaaS Layer takes care of activating/deactivating
VMs for hosting applications on their behalf. The
workload is automatically load balanced, similar to
what the Access Layer does for IaaS, if the developer
chooses to start multiple instances of the application.

Cloud Foundry[15] is the open source solution we sel-
ected for implementing the PaaS Layer released under
the Apache License 2.0 and supported by the Cloud
Foundry Foundation, established in December 2014,
with EMC, HP, IBM, Intel, Pivotal, SAP and VMware
as platinum members. Cloud Foundry is based on Linux
Container (LXC) technology that isolates applications
using operating system containers; this feature permits
to run several applications on a single machine (virtual

Figure 7. Platform as a service layer.

or physical) optimizing the resource usage. It is worth
mentioning that, in case the programmer requires to
activate several copies of an application for H/A, it is
up to Cloud Foundry to transparently deploy them on
different (virtual) machines.

3.5 Administration Tools

SCP implements functions that both the platform ad-
ministrator and the application owners are able to use
for managing, monitoring and administering the cloud
platform components as well as applications running
in the cloud. The actions a user can perform depend
on her role: the platform administrator has full control
on all the objects deployed in the cloud (platform com-
ponents and applications), whilst application owners
have full control on their applications and can perform
only some actions on the platform components. For
instance, application owners have full control on da-
tabases and shared volumes used by their own appli-
cations but do not have any control on databases and
shared volumes of other application owners.

3.6 Monitoring Module

The Monitoring Module is a component for verifying
the working conditions of the resources in the SCP.
The cloud administrator can monitor the resources
used for implementing the platform services (e.g., the
VMs used for the different layers as well as the phy-
sical servers of the IaaS) while the application owners
can keep under control only the VMs of their own
applications.

The Monitoring Module is implemented by Zab-
bix[16], a tool available under GNU General Public Lic-
ense (GPL) version 2 for monitoring the availability
and performance of IT infrastructure components. Acc-
ording to the configuration, Zabbix, continuously ga-
thers information from the servers under control and,
in case one or more parameters reach a threshold value,
it notifies the operator. Zabbix offers several monitoring
options ranging from simple checks for verifying the
availability/responsiveness of a server, to sophisti-
cated measurements of parameters like CPU load, disk
volume occupation, network traffic, number of pro-
cesses, etc. Zabbix provides several ways for repre-
senting monitoring data in both graphical and textual/
tabular format (Figure 8).

Zabbix can inform operators when a problem occurs
with a server by sending an e-mail message, an Instant
Messages (IM) or an SMS; we used such a feature for

Marco Battarra, Marco Consonni, Samuele De Domenico, et al.

 Journal of Smart Cities (2016)–Volume 2, Issue 1 23

Figure 8. Zabbix monitoring page.

notifying the platform administrator or the application
owners in order to request their intervention.

3.7 Database Administration Module

SCP provides web based tools for administering the
supported database engines: we selected phpMyAd-
min[17], for MySQL administration, phpPgAdmin[18],
for PostgreSQL (Figure 9). They implement very sim-
ilar functions for the corresponding database engine,
such as creating, modifying and deleting databases and
database objects (e.g., tables, indexes, etc.), submit-
ting queries, importing/exporting data, managing da-
tabase accounts, etc.

In the SCP context, the cloud administrator has full
control on all the objects and configures database ac-
counts for the application owners, giving them the

rights of managing only the database objects created
for their own applications.

3.8 Platform Administrator’s Console

The Platform Administrator’s Console is designed
exclusively for the SCP administrator who needs to
have full control on all the resources in the platform.
Through the console, the administrator is able to
manage all the elements at any level, IaaS Layer level
included.

The console provides a Command Line Interface
(CLI) suitable for recurrent tasks that can be auto-
mated using CLI scripts. The console is implemented
as an Ubuntu Linux Server with the installation of the
CLI interfaces of all the other components of the plat-
form:

Figure 9. Database Administration — phpPgAdmin and phpMyAdmin.

Storm Clouds Platform: a cloud computing platform for smart city applications

24 Journal of Smart Cities (2016)–Volume 2, Issue 1

 MySQL client and PostgreSQL client for man-
aging the corresponding DB engines of the Dat-
abase Services Module;

 Gluster client, for managing the File Sharing Ser-
vices Module;

 OpenStack CLI software packages, for managing
the IaaS Layer

 Cloud Foundry CLI, for managing the PaaS Layer.
The console is activated as a VM in the IaaS cloud

when SCP is hosted in an OpenStack public cloud.
However, it can also be deployed on a physical server
when SCP is deployed on private cloud.

During the project, we heavily used the console for
automating the deployment and the configuration both
of the platform components and the application ser-
vices. For this purpose we extensively used Open-
Stack Heat that permits the IaaS cloud user to describe
all the IaaS objects that are needed for an application
in a script — called stack — and to “control the entire
lifecycle of infrastructure and applications within
OpenStack clouds”[19]. In this perspective, the activa-
tion and deactivation of the IaaS objects can be simply
obtained by ‘submitting a stack’ to Heat that is in
charge of automatically creating/destroying the listed
IaaS objects (e.g., VMs, Virtual Disks, etc.).

4. Conclusion

This article described the experience we gained on
STORM CLOUDS, a project experimenting the migr-
ation of smart-city digital services to a cloud compu-
ting paradigm.

After analysing the problem, both from the organ-
izational and the technical point of views, we decided
to implement Storm Clouds Platform (SCP), a cloud
computing infrastructure designed for hosting the ap-
plications selected by the project consortium.

During the project, we implemented two instances
of the platform: one at Hewlett Packard Entreprise’s
premises (SCP@HPE), the other hosted at a public
cloud-computing operator (SCP@Operator). We used
SCP@HPE mainly for testing purposes and for sup-
porting the ‘cloudification process’, consisting in the
technical activities for porting the selected applications
to cloud (e.g., adaptation, configuration, automation,
etc.). SCP@Operator, on the other hand, was used as
the “production environment”, for making the migrated
applications available to the end users on Internet.

SCP@HPE is a private cloud providing services for
exclusive use of the STORM CLOUDS project part-
ners while SCP@Operator is hosted on a public cloud.

This exercise demonstrated that our solution sup-
ports both public and private deployment models al-
lowing the project partners (in particular PAs) to de-
cide how to manage their applications once the project
terminates. In some cases, they may decide to keep
their applications on a public cloud operator or, as an
alternative, they can deploy services on equipment at
their own sites, for instance for fulfilling privacy and
security requirements.

All the software components used for the SCP im-
plementation are available under an Open-Source Sof-
tware (OSS) license, fulfilling one of the main requi-
rements of the project. We selected broadly adopted
software packages in order to guarantee long term
support for the solution.

The architecture presented here is a baseline for fu-
ture extensions and modifications with the objective
of improving the way functions are implemented or
for adding new functions not currently available. As
an example, today — when an application owner uses
the Data Service Layer — the platform administrator
needs to create the database(s) and the shared volume
(s) for the programmer to use. This operational model
does not fulfils one of the fundamental requirements
for a pure “as-a-service” paradigm in which services
(in this case the database and the shared volumes)
should be provided in a self-service manner without
any intervention of the cloud administrator. Open-
Stack community is actively working on these aspects
that are respectively addressed by Trove[20] and Ma-
nila[12] projects. Similar problems affect the monitor-
ing functions we implemented and are addressed by
another OpenStack project called Monasca[21]. When
the project was started, these solutions were not ava-
ilable or they were in a very primitive state not suit-
able for a production-ready environment; conseque-
ntly we decided to implement those functions follow-
ing a more traditional, yet more proven, approach.
Moreover, the solution we provide can be more easily
replicated on public clouds based on OpenStack bec-
ause, according to the OpenStack Market Place web
page[22], at the time of writing only one operator offers
Database-as-a-Service (implemented with Trove) and
none of them implements Manila or Monasca.

Evolutions can be directed to support new progra-
mming and deployment paradigms like, for example,
Docker[23] that is based on Linux containers (LXC),
the same technology used by our Cloud Foundry based
PaaS Layer. Actually, Docker can substitute Cloud
Foundry but presents similar adoption problems: the

Marco Battarra, Marco Consonni, Samuele De Domenico, et al.

 Journal of Smart Cities (2016)–Volume 2, Issue 1 25

application architecture need to be reviewed in order
to exploit containers at their full potential and this
requires a strong commitment by the application own-
ers with the related costs. It is worth to remember that
this was the main reason why we designed a solution
supporting both IaaS-based deployment paradigm
(more traditional and with less impact on the applica-
tions) and a PaaS deployment paradigm (that would
require adaptations).

In conclusion, we think that our experience dem-
onstrates that cloud computing is a viable solution for
implementing smart city services. Stakeholders can
take great advantage of the inherent delivery model
that promotes agility, speed and cost savings. Certain
issues such as lack of control on how/where data and
applications are managed/deployed and vendor-lock-
in are still obstacles for the adoption of public cloud
computing models. However, we feel that solutions
like the one described in this paper are on the direction
of alleviating the problem.

Conflict of Interest and Funding

No conflict of interest was reported by all authors.
STORM CLOUDS, short form for "Surfing Towards
the Opportunity of Real Migration to Cloud-based
public Services", is a project partially funded by the
European Commission within the 7th Framework Pro-
gram (Grant Agreement No. 621089)[24].

References

1. STORM CLOUDS Consortium, 2013, Surfing Towards
the Opportunity of Real Migration to CLOUD-based
public Services, viewed January 30, 2016,
<http://stormclouds.asi-soft.com/the-project/>

2. Amazon.com Inc., n.d., Amazon Web Services — Main,
Page, viewed January 7, 2016,
<https://aws.amazon.com>

3. Microsoft Corporation, n.d., Microsof Azure — Main
Page, viewed January 10, 2016,
<https://azure.microsoft.com>

4. Directive 95/46/EC of the European Parliament and of
the Council of 24 October 1995 on the protection of
individuals with regard to the processing of personal data
and on the free movement of such data, n.d., viewed
January 11, 2016,
<http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uris
erv:OJ.L_.1995.281.01.0031.01.ENG>

5. Google Inc., n.d., Google Maps — Main Page, viewed
January 2, 2016,
<https://maps.google.com>

6. CORDIS — Free and open source software activities in
European Information Society initiatives, n.d., viewed

January 4, 2016,
<http://cordis.europa.eu/fp7/ict/ssai/foss-home_en.html>

7. LAMP (software bundle) — Wikipedia page, n.d., viewed
January 30, 2016,
<https://en.wikipedia.org/wiki/LAMP_(software_bundle)>

8. Mell P and Grance T, 2011, The NIST definition of cloud
computing, viewed January 29, 2016,
<http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialp
ublication800-145.pdf>

9. Virtualization — Wikipedia page, n.d., viewed January 20,
2016, <https://en.wikipedia.org/wiki/Virtualization>

10. OpenStack project, n.d., viewed February 1, 2016,
<https://www.openstack.org>

11. Top 10 open source projects of 2014, n.d., viewed February
1, 2016,
<https://opensource.com/business/14/12/top-10-open-sou
rce-projects-2014>

12. OpenStack Manila — Wiki page, n.d., viewed January 22,
2016, <https://wiki.openstack.org/wiki/Manila>

13. Gluster — main page, n.d., viewed January 15, 2016,
<https://www.gluster.org>

14. HAProxy — main page, n.d., viewed January 17, 2016,
<http://www.haproxy.org>

15. Cloud Foundry — main page, n.d., viewed January 11,
2016, <https://www.cloudfoundry.org>

16. Zabbix Company, n.d., Zabbix — main page, viewed
January 29, 2016, <http://www.zabbix.com>

17. phpMyAdmin — main page, n.d., viewed January 21,
2016, <https://www.phpmyadmin.net>

18. phpPgAdmin — main page, n.d., viewed January 21, 2016,
<http://phppgadmin.sourceforge.net/doku.php>

19. OpenStack Heat — Wiki page, n.d., viewed January 21,
2016, <https://wiki.openstack.org/wiki/Heat>

20. OpenStack — Trove page, n.d., viewed January 22, 2016,
<https://wiki.openstack.org/wiki/Trove>

21. OpenStack Monasca — Wiki Page, n.d., viewed January
22, 2016, <https://wiki.openstack.org/wiki/Monasca>

22. OpenStack marketplace — web page, n.d., viewed January
23, 2016,
<https://www.openstack.org/marketplace/public-clouds>

23. Docker Inc., n.d., Docker main page, viewed January 23,
2016, <https://www.docker.com>

24. Storm Clouds Project — European Commission project
page, n.d., viewed July 1, 2014,
<http://ec.europa.eu/digital-agenda/en/storm-clouds-pro-
ject-cloud-public-services>

25. Vendor lock-in — Wikipedia page, n.d., viewed January
12, 2016,
<http://en.wikipedia.org/wiki/Vendor_lock-in>

26. OpenStack — Neutron/LBaaS page, n.d., viewed January
15, 2016,
<https://wiki.openstack.org/wiki/Neutron/LBaaS>

27. Puppet open source, n.d., viewed January 24, 2016,
<https://puppet.com/product/open-source-projects>

28. Zabbix license page, n.d., viewed January 25, 2016,
<http://www.zabbix.com/license.php>

29. High-availability cluster — Wikipedia page, n.d., viewed
January 26, 2016,
<https://en.wikipedia.org/wiki/High-availability_cluster>

,

http://stormclouds.asi-soft.com/the-project/�
https://aws.amazon.com/�
https://azure.microsoft.com/�
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.L_.1995.281.01.0031.01.ENG�
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.L_.1995.281.01.0031.01.ENG�
https://maps.google.com/�
http://cordis.europa.eu/fp7/ict/ssai/foss-home_en.html�
https://en.wikipedia.org/wiki/LAMP_(software_bundle)�
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf�
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf�
https://en.wikipedia.org/wiki/Virtualization�
https://www.openstack.org/�
https://opensource.com/business/14/12/top-10-open-source-projects-2014�
https://opensource.com/business/14/12/top-10-open-source-projects-2014�
https://wiki.openstack.org/wiki/Manila�
https://www.gluster.org/�
http://www.haproxy.org/�
https://www.cloudfoundry.org/�
http://www.zabbix.com/�
https://www.phpmyadmin.net/�
http://phppgadmin.sourceforge.net/doku.php�
https://wiki.openstack.org/wiki/Heat�
https://wiki.openstack.org/wiki/Trove�
https://wiki.openstack.org/wiki/Monasca�
https://www.openstack.org/marketplace/public-clouds�
https://www.docker.com/�
http://ec.europa.eu/digital-agenda/en/storm-clouds-project-cloud-public-services�
http://ec.europa.eu/digital-agenda/en/storm-clouds-project-cloud-public-services�
http://en.wikipedia.org/wiki/Vendor_lock-in�
https://wiki.openstack.org/wiki/Neutron/LBaaS�
https://puppet.com/product/open-source-projects�
http://www.zabbix.com/license.php�
https://en.wikipedia.org/wiki/High-availability_%20cluster�

	RESEARCH ARTICLE
	Storm Clouds Platform: a cloud computing platform for smart city applications
	Marco Battarra, Marco Consonni*, Samuele De Domenico and Andrea Milani
	Hewlett Packard Italiana S.R.L., 9, Via Di Vittorio Giuseppe – 20063 Cernusco Sul Naviglio, Italy
	1. Introduction
	2. The Problem
	2.1 Project Context
	2.2 Application Services
	2.3 High-level Requirements

	3. The Solution
	3.1 Infrastructure as a Service Layer
	3.2 Data Service Layer
	3.3 Access Layer
	3.4 Platform as a Service Layer
	3.5 Administration Tools
	3.6 Monitoring Module
	3.7 Database Administration Module
	3.8 Platform Administrator’s Console

	4. Conclusion
	Conflict of Interest and Funding
	References

