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Abstract: Object-based picture examination (OBIA) as a worldview for dissecting somewhat detected picture information has by and 
large prompted spatially and specifically further developed arrangement brings about correlation with pixel-based methodologies. 
By the by, hearty and adaptable item based answers for mechanized picture examination fit for dissecting sets of pictures or even 
huge picture files with next to no human association are as yet uncommon. A significant justification behind this absence of vigor 
and adaptability is the high intricacy of picture substance: Especially in exceptionally high goal (VHR) remote-detecting information 
with fluctuating imaging conditions or sensor qualities, the inconstancy of the items’ properties in these differing pictures is not really 
unsurprising. The work portrayed in this article expands on alleged rule sets. While prior work has exhibited that OBIA rule sets 
bear a high capability of adaptability, they should be adjusted physically, or characterization results should be changed physically in 
a post-handling step. To mechanize these transformation and change systems, we research the coupling, expansion and combination 
of OBIA with the specialist based worldview, which is exhaustively examined in programming. The points of such mix are (a) 
independently adjusting rule sets and (b) picture protests that can take on and change themselves as per diverse imaging conditions 
and sensor attributes. This article centers around self-adjusting picture objects and along these lines presents a system for specialist 
based picture investigation (ABIA).
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1. Introduction

Since the beginning of the millennium, two major 
new technologies have influenced the remote-sensing 
community: the availability of very high resolution 
(VHR) remote-sensing data and object-based image 
analysis (OBIA). Although OBIA builds on several older 
concepts and methods such as image segmentation, the 
particular combination of these concepts allow applying 
multi-scale concepts (Burnett and Blaschke 2003). 
Both developments mentioned have led to a paradigm 
change in analysing remote-sensing data: from pixel-
based to object-based methods (Blaschke et al. 2014). 
A widespread assumption is that the latter allows for the 
analysis of remote-sensing data beyond spectral statistical 
parameters, using further object properties such as shape 
and spatial context (Benz et al. 2004, Blaschke 2010). 

However – while invoking Blaschke and Strobl (2001) 
– one may first need to ask ‘What’s wrong with pixels?’ 
Instead of a comprehensive answer, we may refer to the 
rapidly growing body of literature where a significant 
number of authors identified an increasing dissatisfaction 
with pixel-by-pixel image analysis. Although this critique 
is not new (Cracknell 1998), see also Blaschke and Strobl 
(2001), Blaschke (2010) and Blaschke et al. (2014) for a 
more thorough discussion; these authors described a need 
for applications ‘beyond pixels’ and for specific methods 
and methodologies that support this.

This ready availability of high-resolution multi-band 
imagery coincided with the increasing awareness in 
remote-sensing literature that novel methods to extract 
mean- ingful and more accurate results were crucial. 
Likewise, what is fundamentally required in complex 
image processing tasks is a kind of ‘intelligence’. Here, 
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the authors are very careful about venturing into artificial 
intelligence. Rather, what is needed is a kind of ‘geo-
intelligence’ as described in Hay and Blaschke (2010).

In the first years of OBIA, segmentation was regarded 
to be inextricably linked to this concept. Indeed, 
segmentation provides the building blocks of OBIA (Hay 
and Castilla 2008, Lang 2008). Segments are regions that 
are generated by one or more criteria of homogeneity 
in one or more dimension (of a feature space). Thus, 
segments have additional spectral information compared 
to single pixels. It is, in principle, based on the spectral 
statistics of the segments’ underlying pixels. However, of 
even greater advantage than spectral per-object statistics 
is the additional spatial information for objects (Benz et 
al. 2004, Hay and Castilla 2008). It has been frequently 
claimed that this spatial dimension (shape, distances, 
neighbourhood, topologies, etc.) is crucial to OBIA 
methods, and that this is a major reason for the remarkable 
increase in the use of segmentation-based methods in 
recent times, compared to the use of image segmentation 
in remote sensing during the 1980s and 1990s (Benz et al. 
2004, Blaschke et al. 2014). Still, we can conclude that 
in very recent literature, segmentation has been seen as 
less crucial for OBIA. Authors increasingly recognise that 
the real potential lies in the intelligence and the chance to 
formulate user knowledge as ‘rule sets’ (Hofmann et al. 
2011, Belgiu et al. 2014a, Lang et al. 2014).

Although various studies in literature report an 
increase in spatial and thematic accuracies for OBIA 
approaches (see the meta-analyses of Blaschke (2010) 
and Blaschke et al. (2014)), the creation of robust, object-
based solutions for automated image analysis of a set 
of images or even large image archives still remains 
extremely challenging (Pinz 2005, Walker and Blaschke 
2008, Hofmann et al. 2011, Laliberte and Rango 2011, 
Kohli et al. 2013). Especially the highly complex 
content of VHR image data and the hardly predictable 
variability of the objects’ qualities in such diverging 
image data reduce the robustness and transferability of 
OBIA rule sets used for classification. Consequently, 
either the rule sets or the objects’ shape or even both need 
manual adaptation in order to achieve acceptable results. 
However, manual interaction and adaptation is deemed 
to be time consuming, labour-intensive and consequently 
error- prone. Novack et al. (2014) report on results from 
transferring a generic knowledge base to two different 
software packages for OBIA, both of them finally 
operating with soft- ware-specific rule sets. In order to 
overcome the limited transferability of OBIA rule sets, 
we investigate the coupling, extension and integration 
of OBIA with principles and methods from the agent-

based paradigm. In particular, this article introduces a 
framework for agent-based image analysis (ABIA), which 
extends the existing OBIA concepts and methods by some 
from the agent-based paradigm.

1.1 The Principles of OBIA Workflow

Recently, the typical workflow of OBIA begins with 
a more or less arbitrary segmentation of the input data to 
generate a hierarchical net of image objects followed by 
an initial classification of the generated image objects. 
Then, OBIA enters an iterative process of selective 
segmentation improvements and re-classifications until 
a satisfactory result is achieved. The criteria on which 
the subset selection has to operate during iteration can be 
based on spatial criteria, non-spatial criteria or both (Baatz 
et al. 2008, Lang 2008). In order to be able to reapply the 
segmentation and classification process, all processing 
steps, their procedural sequences and sub-sequences 
are organised in a rule set. Depending on the software 
used, rule sets can be described in a domain-specific 
language (DSL), which is structured as a programming 
language but uses linguistic elements and concepts of 
the application domain (Hudak 1996, Fowler 2010). A 
prominent representative of such a DSL in the context of 
OBIA is the cognition network language (CNL), which 
is implemented in the software eCognition® (Athelogou 
et al. 2007). In CNL, two principal types of rules exist: 
processing rules, which either calculate values or change 
the objects’ shape; and classification rules, which assign 
objects to classes based on defined classification rules. 
For the latter, hierarchical fuzzy classification schemes 
complement the usual threshold-based classification and 
thereby describe each class based on fuzzy membership 
functions and their combination to fuzzy rules (Benz et al. 
2004). The hierarchical classification schemes reflect the 
object classes’ ontology, which describes the appearance 
of the real-world objects in the image data at hand (Belgiu 
et al. 2014b). However, the effort to develop a rule set 
can be great (Arvor et al. 2013, Belgiu et al. 2014b), 
and its reusability is limited once the input data changes 
(Hofmann et al. 2011). In the remainder of this article we 
therefore introduce a first approximation of a solution to 
this problem, which aims to integrate concepts of agent-
based computing for the adaption of such rule sets and 
image objects.

1.2 The Definition of Quality in OBIA

Quality of geographic information and therefore of 
results derived from the analysis of remote-sensing 
data by definition reflects the minimum properties of an 
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acceptable classification result (ISO 19157:2013). In this 
context, quality is usually determined by quantifying the 
correctness and completeness of a classification result. 
In remote- sensing practice, both aspects are measured 
by comparing a to-be-evaluated classification result 
with another classification result that is assumed to be 
true (Congalton and Green 2009, ISO 191577:2013, 
Novack et al. 2014). However, this approach suggests an 
absolute correctness and completeness of the reference 
classification that is not necessarily given. Additionally, it 
requires semantically absolute conform class definitions, 
which in many cases do not exist (Hofmann and Lohmann 
2007, Albrecht et al. 2010). Hence, for evaluating the 
quality of a classification result, it is rather sensible to 
focus on the requirements a classification result has to 
meet in order to be accepted by the user. Such quality 
criteria could be, for example, a minimum allowed 
deviation from a given – and not necessarily correct 
– reference map. When using fuzzy classification 
mechanisms, further requirements can be defined; for 
example, a minimum allowed ambiguity per object, per 
class or per scene (Benz et al. 2004, Hofmann et al. 2011).

1.3 Software Agents and Multi-agent Systems

Software agents are defined by being flexible and 
capable of acting autonomously in complex environments. 
They are thus provided with sensors and effectors in 
order to interact with their environment and to achieve 
predefined goals. Coupling several software agents to 
a multi-agent system (MAS) enables them to interact, 
communicate and collaborate among themselves in order 
to achieve either individual or common goals. In such a 
system, individual agents with different roles can exist, 
with each of them having role-dependent abilities and 
goals and all of them being organised in a network of 
collaborative agents. Although being organised in a net- 
work of software agents, each agent decides individually 
and based on its own strategy, how to act in a particular 
situation. These fundamental abilities have been shown 
to allow agent-based systems to deal with complex and 
unpredictable situations, as well as with incomplete 
information in a much more flexible and robust manner 
compared to conventional systems (Wooldridge and 
Jennings 1995, Jennings 2000).

1.3.1 Software Agents and MAS in GIS and Image 
Analysis

In GIScience, agent-based models (ABMs) are 
typically used for simulating complex spatiotemporal 
processes, such as land-use modelling (Parker et al. 

2003, Macal and North 2005, Brown et al. 2005, Koch 
2007, Marceau and Moreno 2008, Yu and Peuquet 2009). 
Likewise, agent-based systems (ABSs) are meanwhile 
widely used in industry for applications, such as process 
automation, that require a high level of robustness and 
flexibility (Fazel Zarandi and Ahmadpour 2009, Göhner 
2013). However, using software agents or MAS in image 
analysis is not very common yet. In the remote-sensing 
domain, Samadzadegan et al. (2009) and (2010) report on 
the application of ABS for building detection from LiDAR 
data, whereas for image analysis in the life science 
domain, Bovenkamp et al. (2004) describe a similar 
approach for object detection in intra-vascular ultra-
sound (IVUS) images and Rodin et al. (2004) demonstrate 
the application of agent-based systems in biological 
image analysis. Mahmoudi et al. (2013) describe an 
ABS designed to improve OBIA classification results in 
urban areas. Here, different tasks of object recognition 
are distributed among respectively defined agents. The 
agents then simultaneously operate on the image and 
share their (intermediate) results. The authors demonstrate 
that software agents can principally be used to parallelise 
image processing tasks and show how simultaneously 
arising individual classification results can be improved

1.3.2 Ontologies in GIS, OBIA and the Agent-
based Paradigm

O n t o l o g i e s  i n  G I S ,  O B I A a n d  a g e n t - b a s e d 
programming play a central role in the design of geo-
databases, rule sets and that of software agents. In all the 
three domains, they explicitly describe those parts of the 
real world that are relevant for the respective domain and 
application. Especially in OBIA, the ontology acts as 
the foundation for the rule set, its object classes and all 
the classes’ semantic constraints. It describes the object 
classes and their semantics as independent from any 
underlying image data as possible. However, the image-
specific appearance of particular classes in particular 
image data can only be described by a rule set that uses the 
structure of the ontology but is simultaneously designed 
for the data in use. Belgiu et al. (2014b) describe a method 
for converting an ontology expressed in the Web Ontology 
Language 2 (OWL 2, see Motik et al. 2009) automatically 
to a framework for an OBIA rule set. OWL 2 is a 
recommendation of the World Wide Web Consortium 
(W3C) that has been widely adopted by the Semantic 
Web Initiative. The remote-sensing ontologies extend the 
semantics of target classes such as land cover classes, 
informal settlements or refugee camps with properties 
that allow their detection in the remotely sensed data at 
hand. These properties are acquired either from literature 
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(Belgiu et al. 2014c) or by using data mining techniques 
(Belgiu et al. 2014a, Maillot et al. 2004). In agent-based 
computing for the design of software agents, the so- called 
belief-desire-intention (BDI) model is very common (Rao 
and Georgeff 1995). In this context the ontology serves 
as the world-model for agents. That is, the ontology 
describes the agents’ beliefs. As recent studies showed 
(Viezzer 2006), this world model is not necessarily static. 
Moreover, software agents can be designed to adapt 
their world- model according to changing environmental 
conditions as a kind of an individual survival strategy.

2. Integrating OBIA and the Agent-based 
Paradigm

The concept for ABIA proposed in this article focuses 
on integrating mechanisms of agent-based control (ABC) 
as applied in process automation and ABM with OBIA. 
In particular, a framework for autonomous and adaptive 
control of OBIA using software agents in order to increase 
the robustness of particular OBIA solutions is introduced. 
For this purpose, two principal and independent 
approaches in the MAS framework are possible:

(1) Extending the image object hierarchy as known 
from OBIA to a hierarchically organised MAS of 
networked image object agents (IOAs) with autonomous 
adaptation and interaction capabilities.

(2) Autonomously adapting existing rule sets by means 
of a MAS of rule set adaptation agents (RSAAs) in order 
to robustly analyse varying image data without any need 
for further human interaction.

In the following we focus on the first approach. In this 
approach, we extend the well- known OBIA concept of a 
hierarchical net of image objects to a hierarchical net of 
IOAs. Within this network, each image object aka image 
segment can act and interact in agent-autonomously 
decide whether the adaptation process needs to be 
continued or not. By logging the success of each 
adaptation action, ‘promising’ adaptation strategies can be 
learnt or even the agent’s ontology can be adapted. That 
is, particular actions – preferably those providing the least 
ontology violation together with best achievable quality – 
are being prioritised for future applications. In the ABIA 
framework, this balancing and evaluation task can be 
either performed on an agent individual level, or by one or 
several dedicated control agents (CAs). The major roles of 
CAs are then:

(1) Avoiding contradictions between the ontology and 
intended agent actions.

(2) Compare the achieved quality with the user-defined 
quality for acceptance.

(3) Trigger and abort adaptation processes as necessary; 

for example, abort if quality criteria are achieved.
(4) Learn the most promising strategies for goal 

achievement.

Design of a MAS with IOAs

In a MAS consisting of IOAs, it is the image objects 
aka IOAs themselves that adapt autonomously according 
to changing image data. Similar to OBIA, in this 
architecture, image objects evolve to a hierarchical net of 
IOAs wherein each IOA is connected with its neighbour 
agents, its higher-level (super-) agents and its lower-level 
(sub-) agents.

After initial segmentation and classification steps, 
each IOA compares its degree of compliance with the 
‘antetype’ of the class it was initially assigned to and as it 
is defined in the ontology. The goal of each IOA is to meet 
its ‘antetype’ as best as possible. For this purpose, each 
IOA develops its individual strategy to achieve this goal, 
whereas action priorities can be pre-defined in general or 
depending on the initial class assignment of an IOA. In 
principle, each IOA has two options to act: (1) re-segment 
itself and (2) merge with neighbouring IOAs. Option (2) 
is sensible in situations where merging of neighbour- 
IOAs would improve the overall classification quality 
(over-segmentation), but it implies that at least one of 
the involved IOAs will dissolve itself. Option (1) can be 
manifold, ranging from sub-segmentation via shrink-and-
grow methods to negotiations about border pixels with 
neighbour IOAs. The prioritisation of particular actions 
can depend on the IOA’s class assignment and its grade 
of goal achievement. For example, an IOA classified 
as a ‘house’ but with borders that are not fully straight-
lined might intend to execute a respective straight-lining 
algorithm. Since these operations can lead to conflicts 
between neighbouring objects (for example, between 
a ‘house’ and a ‘forest’ IOA), using CAs to prioritise 
individual actions is sensible.

The adaptation process stops either if the user defined 
quality requirements are met or if a user-defined threshold 
for the total number of adaptations has been reached. 
In order to avoid the system being trapped in a cyclic 
sequence of adaptation steps, a snapshot mechanism is 
sensible, which avoids endless loops.

3. Preliminary Results and Discussions

Since we are just in the beginning of implementing the 
framework, the following results are based on a simulated 
MAS created with eCognition© Developer 9 (www. 
ecognition.com) and its CNL. That is, as far as possible 
an agent environment and IOAs are created without the 
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use of a dedicated design tool for software agents; for 
example, Repast (Macal and North 2005). Consequently, 
our implementation in CNL is relatively simple. We 
provide example results that we have achieved with the 
created IOA-architecture as described in Section 2.2. For 
this purpose, simulated software agents are improving 
an initially created segmentation and classification result 
in a VHR data subset. The initial rule set is based on a 
simple building ontology (see Sections 1.3.2 and 3.2) and 
contains all necessary processing steps together with the 
class descriptions. In the subset, three buildings are visible 
that cannot be deli- neated properly by the initial rule set. 
Therefore, the IOA-MAS intends to stepwise improve 
these results as much as possible.

3.1 Data

The simulation has been applied on an orthorectified 
image from Weilheim, Upper Bavaria, Germany, taken in 
May 2010. The orthoimage together with a digital surface 
model (DSM) was generated based on a stereo pair of 
the RGB-bands captured by an UltraCam XP (www.
ultracamx.com) using software from SimActive (www.
simactive. com). The spatial resolution of the orthoimage 
is at 8 cm, that of the DSM at 35 cm. The radiometric 
resolution of the optical data is at 8bit. From the DSM, the 
slope and slope of slope (change of slope) were calculated 
per pixel and expressed in degree from 0° to 90°. The 
subset under investigation has a size of 1311 × 869 pixels.

3.2 Ontology

To describe semantically how buildings look like 
in general when using the above- described data, 
we have developed an ontology in accordance with 
Lampoltshammer and Heistracher (2014), Belgiu et 
al. (2014c) and Durand et al. (2007). In particular our 
ontology denotes the buildings’ roof shape, that is, their 
form and colour and the buildings’ relative height to their 
neighbouring objects. In contrast to the above-mentioned 
authors, in our building ontology colour and local 
elevation difference together with the elevation variability 
is included.

The ontology has been directly implemented as a 
respective class hierarchy in eCognition© Developer 9.

3.3 Initial Rule Set

For initial classification, we have developed a simple 
rule set to delineate roofs based on the ontology as 
described in Section 3.2. It starts with a multi-resolution 
segmentation (MRS) as described by Baatz and Schäpe 
(2000) whereas all three bands, the DSM and the slope 

have been weighted equally for the segmentation. 
Respectively, the homogeneity criteria of the MRS are 
composed equally of the RGB bands, the DSM and the 
slope. The brightness per object is calculated only based 
on the RGB-bands. To assign the initially created objects 
to a ‘roof’ class, a fuzzy class hierarchy has been defined 
with classification rules. Applying the above-described 
rule set to the data leads to an initial classification result 
as depicted.

3.4 Simulation of an IOA-MAS

In order to simulate a MAS consisting of IOAs, 
image objects are virtually organised as IOAs in 
eCognition©. In our particular case, each object aka IOA 
having a membership (1) merge with most promising 
neighbour object; (2) coat for five pixels; (3) do nothing. 
For achieving its goal, each IOA can decide at every 
processing step to apply one of these effectors without 
any priority. During processing, to decide which of 
them seems to be the most promising, they are executed 
virtually for each object-agent on a copy of the current 
scene (evaluate in Listing 1; see supplement for a detailed 
description of the CNL code). We have disclaimed to 
define further quality criteria – such as a minimum 
number of objects with acceptable quality – as common 
goals. Consequently, no CAs were implemented. That is, 
the overall processing stops after a user-defined number 
of steps.1 Since in eCognition© all objects are embedded 
in a (hierarchical) net of image objects, a neighbourhood 
sensor for each IOA is not necessary. The inner status of 
each IOA (goal achievement) is expressed by the current 
membership degree µ to the best-fitting ‘roof’ class, which 
is determined during processing by classifying each object 
after applying one of the effectors. Since for merging at 
least one of the merging objects has to abandon itself, 
this is only allowed if the resulting object has a better 
membership than both objects had before merging. This 
way, negotiation (function IsAllowdMerge() in Listing 1) 
between neighbouring IAOs is simulated (see Listing 1 
and supplement for detailed description).

3.5 Results and Discussion

Applying the simulated IOA-MAS as described in the 
section before to the initial result generated with the data 
and rule set described in Sections 3.1 and 3.3 led to the 
final result. We have run the ABIA process for 100 tics. In 
order to document the development of the classification 
quality, after each tic the intermediate result (see 
Appendix) underwent a per-pixel accuracy assessment 
based on correctly assigned pixels (true positives and 
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negatives) and wrongly assigned pixels (false positives 
and negatives) using the manual reference image. 
Additionally, some quality assessment measures based 
on the membership degree of each object are calculated 
for each intermediate result. As can be seen from the 
development plots, after 17 tics no significant changes 
are observable. Thus, in the following discussion we are 
focusing on the first 17 tics. Comparing the final result 
with the initial result and the reference map visually, the 
following can be observed: The over-segmentation of the 
big building at the centre has been reduced although the 
left part still remains unclassified (the default threshold 
for crisp class assignment in eCognition© is at µ ≥ 0.1). 
The initially over-segmented and not fully outlined 
building in the central-east has improved to an almost 
perfectly represented ‘roof’ while the belonging garage 
did not change at all and was not merged with the main 
building, as in the reference map. The shaded vegetation 
close to the central building in-between the buildings 
has been wrongly outlined and classified as ‘roof’ after 
the ABIA process. Additionally, objects being initially 
wrongly classified as ‘roof’ at the border between the 
parking lot and the central building grew or even merged 
with the building segments, while the western part of the 
big central building’s roof remained unclassified (but it 
could improve its membership to ‘roof’ from 0.0 to 0.016; 
see Appendix). The unclassified cut-off part of the garage 
in the north-east still remained unclassified and never 
changed during the process. Note that its membership 
degree to ‘roof’ even in the reference map is relatively 
low.

Based on the basic per-pixel accuracy measures, 
we have calculated for the first 17 intermediate results 
the derivative measures: precision, recall, accuracy 
(Landgrebe et al. 2006) and F-score (Powers 2011). 
Additionally, we have tracked the average membership 
degree of all objects with a membership to ‘roof’ of µ 
> 0.0 and the number of objects with µ > 0.5. While the 
former documents the average adaptation of the IOAs, 
the latter documents the classification’s fuzziness on a per 
object basis (Siler and Buckley 2005). Further, we have 
observed on a per object basis the average membership 
to ‘roof’ of those objects, which cover at least 50% true 
positive pixels (predominantly correct objects). Similarly, 
we have observed the average membership to ‘roof’ of 
predominantly false positive objects, that is, of objects 
that cover more than 50% false positive pixels. While the 
former documents the improvement of objects, the latter 
documents the development of false positive errors.

The accuracy first decreases (tic No. 1–4), but then 
increases until it saturates at tic No. 12 at a level of 

0.9037. Similarly, recall even continuously increases 
already from the very beginning, while precision more 
or less inversely decreases in the same period of tics; the 
F-score behaves similarly to recall. This indicates that 
the overall classification has increased during the ABIA 
process. Regarding the classification quality based on the 
membership degrees per object, this has improved as well.

The mean µ of all objects with a membership to ‘roof’ 
of µ > 0.0 (mean µ per class) increases from 0.0916 to 
its final saturated level of 0.1874, whereas the mean µ 
per class also includes wrongly assigned objects (false 
positives) and objects with a relatively low membership 
degree. The number of ‘roof ’ objects with µ > 0.5 
develops from n = 3 (tic No. 1) to n = 6 (tic No. 10) 
whereas in tic No. 8 and tic No. 9 it decreases to n = 5 but 
then returns to n = 6. This indicates that the number of 
classified ‘roof’-objects with low fuzziness, that is, with a 
relatively clear class assignment, has increased.

Comparing the developments with the reference 
classification, obviously a per- object improvement is 
observable, since the number of objects with a minimum 
amount of 50% correctly classified pixels remained 
constant (n = 5) but their average membership degree to 
‘roof’ has increased and remains at a relative high level 
(mean

µ = 0.85). Vice versa, the initial number of wrongly 
assigned objects (more than 50% of false positive 
pixels) increases and they could improve their average 
membership degree, too, but on a far lower level (mean 
µ = 0.40) than the correctly assigned objects. Similarly, 
the obviously largest false negative object, that is, the 
western part of the big central building, develops positive 
(µ = 0.0 in tic No. 1 to µ = 0.016 in tic No. 11 and the 
following tics). However, this object could not improve 
further, because if the eastern ‘roof’ object of the centre 
building (µ = 0.98 in tic No. 17) would merge with it, the 
resulting object would have a decreased membership to 
‘roof’. Similarly, a growth of this object would decrease 
the membership of the neighbouring ‘roof’ objects. 
Moreover, when comparing the memberships of the final 
result with those of the reference map, the manually 
classified objects (except the cut-off object in the north-
east) have lower membership degrees to ‘roof’ than 
some of the automatically processed ‘roofs’. Especially 
for the building in the centre-east this is obvious. This 
indicates, that (1) the ontology and therefore the class 
hierarchy is not absolutely in compliance with our 
perception and (2) data quality leads to misinterpretations 
by the classifier. The latter is obvious for shaded higher 
vegetation, since here elevation information and spectral 
information for vegetation and buildings are similar due 
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to lower brightness. Especially in the case of the shaded 
vegetation bordering north to the centre building (µ = 
0.69 in tic No. 17), it has increased its membership to 
‘roof’, since the shade of the bordering building improves 
its shape in terms of being ‘roof’-like. For this object 
during the ABIA process, the more shade (of the building) 
it has accumulated the more its shape criteria for ‘roof’ 
was fulfilled. Nevertheless, for all false positive objects 
including both wrongly assigned vegetation objects, 
their membership degree to ‘roof’ is relatively low. 
Additionally, at some positions, simply the DSM is very 
inaccurate. Especially at the buildings’ borders, this effect 
led to a slight overgrowing of, and in the worst case to a 
merger with, the already wrongly assigned ‘roof’ objects, 
as is the case in the south-eastern jutty of the central 
building.

4. Conclusions and Outlook

The article introduces a framework for agent-
based image analysis of remote-sensing data in order 
to overcome the problems arising with robustness of 
OBIA rule sets and their adaptability to a variety of 
similar images. In particular, it suggests two principal 
possible conceptual approaches of integrating OBIA with 
methods from agent-based control and simulation (IOAs 
vs. RSAAs) while it is focusing on the IOA-approach. 
A rule set has been implemented in CNL and applied 
with eCognition© Developer 9, which initially detects 
buildings quite fairly in a small subset of an UltraCamXP 
ortho-image and a DSL based on these data. The rule 
set further simulates the behaviour of relatively simple 
designed IOAs, which stepwise improves their initial 
results.

The agent-based processing and its interim-results have 
been analysed under the aspects of: per-pixel accuracy 
improvement and goal achievement. Although the final 
results still show deficits, an improvement of the initial 
result could be observed. Some classification deficits are 
obviously data driven. The latter could be improved for 
example by including infrared information. Introducing 
brightness as a further colour criterion for the building-
ontology and rule set would be another option, whereas 
this adaptation should be realised either by the IOAs 
themselves or by RSAAs. The design of the presented 
IOAs is certainly very simple, which is to some extent 
due to the limits of eCognition© and CNL. Both are not 
intended to be used for agent-based programming and 
consequently the typical BDI paradigm for software 
agents could only be implemented slightly, that is, a MAS 
consisting of IOAs could only be simulated. However, 
it is planned in future work to use more dedicated 

development environments, such as Repast. Then, for 
example IOAs could be enabled to recognise which of the 
class describing features cause a low ‘roof’ membership 
and based on that, trigger a more dedicated self-improving 
operation.

The fact that objects of the manual reference did not 
fully fulfil the membership criteria of ‘roof’ indicates that 
the building ontology used and the perception applied for 
reference generation are diverging. Thus, the ontology 
should be further developed in order to meet more 
aspects of ‘roofs’, which could then improve the fuzzy 
classification rules.

Nevertheless, we have shown that even with these 
simply designed IOAs, an improve- ment of the initial 
classification is possible. We have analysed and presented 
these improvements under the aspects of compliance 
with the reference map and reliability of fuzzy class 
assignments. The potential of ABIA to autonomously 
adapt image objects to unknown imaging situations has 
been demonstrated.
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