Molecular evidence of the existence of anaerobic ammonia oxidation bacteria in the gut of polychaete (Neanthes glandicincta)

VIEWS - 695 (Abstract) 115 (PDF)
Meng Li, Ji-Dong Gu

Abstract


Neanthes are one of the most important groups of polychaete in coastal sediments, which play an important role on the nutrient cycling in coastal sediments. Here we report on the existence of anammox bacteria in the gut of polychaete Neanthes glandicincta based on the analysis of 16S rRNA gene and fluorescence in situ hybridization (FISH). Three distinct clusters of anammox bacteria are found in different gut sections of N. glandicincta, and one of them is considered as a novel, gut specific anammox bacteria after comparing with the anammox bacteria recovered from surrounding pre-digested sediment. The uniform axial distribution of anammox bacteria in different gut sections of N. glandicincta is also found in present study. These results extend our knowledge of microbial ecology of anammox bacteria in the natural environments.

Full Text:

PDF

References


Mulder A, Van de Greef A A A, Robertson L A, et al. 1995, Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor. FEMS Microbiology Ecology, vol.16(3): 177–184. http://dx.doi.org/10.1016/0168-6496(94)00081-7.

Van de Graaf A A, Mulder A, de Bruijn P, et al. 1995, Anaerobic oxidation of ammonium is a biologically mediated process. Applied and Environmental Microbiology, vol.61(4): 1246–1251.

Dalsgaard T, Canfield D E, Petersen J, et al. 2003, N2 production by the anammox reaction in the anoxic water column of Golfo Dulce, Costa Rica. Nature, vol.422: 606–608. http://dx.doi.org/10.1038/nature01526.

Kuypers M M, Sliekers A O, Lavik G, et al. 2003, An-aerobic ammonium oxidation by anammox bacteria in the Black Sea. Nature, vol.422: 608–611. http://dx.doi.org/10.1038/nature01472.

Francis C A, Beman J M and Kuypers M M, 2007, New processes and players in the nitrogen cycle: the microbial ecology of anaerobic and archaeal ammonia oxidation. The ISME Journal, vol.1(1): 19–27.

http://dx.doi.org/10.1038/ismej.2007.8.

Babbin A R, Keil R G, Devol A H, et al. 2014, Organic matter stoichiometry, flux, and oxygen control nitrogen loss in the ocean. Science, vol.344(6182): 406–408. http://dx.doi.org/10.1126/science.1248364.

Penton C R, Devol A H and Tiedje J M, 2006, Molecular evidence for the broad distribution of anaerobic ammonium-oxidizing bacteria in freshwater and marine sediments. Applied and Environmental Microbiology, vol.72(10): 6829–6832. http://dx.doi.org/10.1128/AEM.01254-06.

Ward B B and Jensen M M, 2014, The microbial nitro-gen cycle. Frontiers in Microbiology, vol.5: 553. http://dx.doi.org/10.3389/fmicb.2014.00553.

Schmid M C, Maas B, Dapena A, et al. 2005, Bio-markers for in situ detection of anaerobic ammo-nium-oxidizing (anammox) bacteria. Applied and Environmental Microbiology, vol.71(4): 1677–1684.

http://dx.doi.org/10.1128/AEM.71.4.1677-1684.2005.

Li M, Hong Y, Klotz M G, et al. 2010, A comparison of primer sets for detecting 16S rRNA and hydrazine oxidoreductase genes of anaerobic ammonium-oxidizing bacteria in marine sediments. Applied Microbiology and Biotechnology, vol.86(2): 781–790. http://dx.doi.org/10.1007/s00253-009-2361-5.

Li M, Ford T, Li X Y, et al. 2011, Cytochrome cd1-containing nitrite reductase encoding gene nirs as a new functional biomarker for detection of anaerobic ammonium oxidizing (anammox) bacteria. Environmental Science & Technology, vol.45(8): 3547–3553. http://dx.doi.org/10.1021/es103826w.

Li M and Gu J-D, 2011, Advances in methods for detection of anaerobic ammonium oxidizing (anammox) bacteria. Applied Microbiology and Biotechnology, vol.90: 1241–1252. http://dx.doi.org/10.1007/s00253-011-3230-6.

Harhangi H R, Le Roy M, Van Alen T, et al. 2012, Hydrazine synthase, a unique phylomarker with which to study the presence and biodiversity of anammox bacteria. Applied Microbiology and Biotechnology, vol.78(3): 752–758. http://dx.doi.org/1010.1128/AEM.07113-11.

Han P, Li M and Gu J-D, 2013, Biases in community structures of ammonia/ammonium-oxidizing microorganisms caused by insufficient DNA extractions from Baijiang soil revealed by comparative analysis of coastal wetland sediment and rice paddy soil. Applied Microbiology and Biotechnology, vol.97: 8741–8756. http://dx.doi.org/10.1007/s00253-013-5169-2.

Han P, Huang Y T, Lin J G, et al. 2013, A comparison of two 16S rRNA gene-based PCR primer sets in unraveling anammox bacteria from different environmental samples. Applied Microbiology and Biotechnology, vol.97(24): 10521–10529. http://dx.doi.org/10.1007/s00253-013-5305-z.n

Thamdrup B and Dalsgaard T, 2002, Production of N(2) through anaerobic ammonium oxidation coupled to nitrate reduction in marine sediments. Applied and Environmental Microbiology, vol.68: 1312–1318. http://dx.doi.org/10.1128/AEM.68.3.1312-1318.2002.

Trimmer M, Nicholls J C and Deflandre B, 2003, Anaerobic ammonium oxidation measured in sediments along the Thames estuary, United Kingdom. Applied and Environmental Microbiology, vol.69: 6447–6454. http://dx.doi.org/10.1128/AEM.69.11.6447-6454.2003.

Risgaard-Petersen N, Meyer R L, Schmid M, et al. 2004, Anaerobic ammonium oxidation in an estuarine sediment. Aquatic Microbial Ecology, vol.36(3): 293–304. http://dx.doi.org/10.3354/ame036293.oi:110.3354/ame0362930.3354/ame03629.

Hong Y G, Li M, Cao H, et al. 2011, Residence of habitat-specific anammox bacteria in the deep-sea subsurface sediments of the South China Sea: analyses of marker gene abundance with physical chemical parameters. Microbial Ecology, vol.62(1): 36–47. http://dx.doi.org/10.1007/s00248-011-9849-0.

Li M, Cao H, Hong Y G, et al. 2011, Seasonal dynamics of anammox bacteria in estuarial sediment of the Mai Po Nature Reserve revealed by analyzing the 16S rRNA and hydrazine oxidoreductase (hzo) genes. Microbes and Environments, vol.26(1): 15–22.

http://dx.doi.org/10.1264/jsme2.ME10131.

Kuypers M M, Lavik G, Woebken D, et al. 2005, Massive nitrogen loss from the Benguela upwelling system through anaerobic ammonium oxidation: Proceedings of the National Academic Sciences, USA, vol.102(18): 6478–6483. http://dx.doi.org/10.1073/pnas.0502088102.

Thamdrup B, Dalsgaard T, Jensen M M, Ulloa, et al. 2006, Anaerobic ammonium oxidation in the oxy-gen-deficient waters off northern Chile. Limnology and Oceanography, vol.51(5): 2145–2156. http://dx.doi.org/10.4319/lo.2006.51.5.2145.

Hamersley M R, Lavik G, Woebken D, et al. 2007, Anaerobic ammonium oxidation in the Peruvian oxygen minimum zone. Limnology and Oceanography, vol.52(3): 923–933. http://dx.doi.org/10.4319/lo.2007.52.3.0923.

Meyer R L, Risgaard-Petersen N and Allen D E, 2005, Correlation between anammox activity and microscale distribution of nitrite in a subtropical mangrove sediment. Applied and Environment Microbiology, vol.71(10): 6142–6149. http://dx.doi.org/10.1128/AEM.71.10.6142-6149.2005.

Li M and Gu J-D, 2013, Community structure and transcript responses of anammox bacteria, AOA, and AOB in mangrove sediment microcosms amended with ammonium and nitrite. Applied Microbiology and Biotechnology, vol.97(22): 9859–9874. http://dx.doi.org/10.1007/s00253-012-4683-y.

Rysgaard S and Glud R N, 2004, Anaerobic N2 production in Arctic sea ice. Limnology and Oceanography, vol.49: 86–94. http://dx.doi.org/10.4319/lo.2004.49.1.0086.

Hu B L, Rush D, Van der Biezen E, et al. 2011, New anaerobic, ammonium-oxidizing community enriched from peat soil. Applied and Environmental Microbiology, vol.77: 966–971. http://dx.doi.org/10.1128/AEM.02402-10.

Shen L D, Liu S, Lou L P, et al. 2013, Broad distribution of diverse anaerobic ammonium-oxidizing bacteria in chinese agricultural soils. Applied Environmental Microbiology, vol.79(19): 6167–6172. http://dx.doi.org/10.1128/AEM.00884-13.

Wang J, Dong H, Wang W, et al. 2014, Reverse-tran-scriptional gene expression of anammox and ammo-nia-oxidizing archaea and bacteria in soybean and rice paddy soils of Northeast China. Applied and Microbiology Biotechnology, vol.98: 2675–2686.

http://dx.doi.org/10.1007/s00253-013-5242-x.

Nie S, Li H, Yang X, et al. 2015, Nitrogen loss by an-aerobic oxidation of ammonium in rice rhizosphere. The ISME Journal, vol.9(9): 2059–2067. http://dx.doi.org/10.1038/ismej.2015.25.

Yang X R, Li H, Nie S A, et al. 2015, Potential contribution of anammox to nitrogen loss from paddy soils in Southern China. Applied and Environmental Microbiology, vol.81(3): 938–947. http://dx.doi.org/10.1128/AEM.02664-14.

Schubert C J, Durisch-Kaiser E, Wehrli B, et al. 2006, Anaerobic ammonium oxidation in a tropical freshwater system (Lake Tanganyika). Environmental Microbiology, vol.8(10): 1857–1863. http://dx.doi.org/10.1111/j.1462-2920.2006.01074.x.

Hu B L, Shen L D, Zheng P, et al. 2012, Distribution and diversity of anaerobic ammonium-oxidizing bacteria in the sediments of the Qiantang River. Environ-mental Microbiology Reports, vol.4(5): 540–547. http://dx.doi.org/10.1111/j.1758-2229.2012.00360.x.

Lee K H, Wang Y F, Zhang G X, et al. 2014, Distribution patterns of ammonia-oxidizing bacteria and anammox bacteria in the freshwater marsh of Honghe wetland in Northeast China. Ecotoxicology, vol.23(10): 1930–1942. http://dx.doi.org/10.1007/s10646-014-1333-4.

Byrne N, Strous M, Crepeau V, et al. 2009, Presence and activity of anaerobic ammonium-oxidizing bacteria at deep-sea hydrothermal vents. The ISME Journal, vol.3: 117–123. http://dx.doi.org/10.1038/ismej.2008.72.

Russ L, Kartal B, Op den Camp H J, et al. 2013, Presence and diversity of anammox bacteria in cold hydro-carbon-rich seeps and hydrothermal vent sediments of the Guaymas Basin. Frontiers in Microbiology, vol.4: 219. http://dx.doi.org/10.3389/fmicb.2013.00219.

Strous M, Fuerst J A, Kramer E H M, et al. 1999, Miss-ing lithotroph identified as new planctomycete. Nature, vol.400: 446–449.

http://dx.doi.org/10.1038/22749.

Schmid M, Walsh K, Webb R, et al. 2003, Candidatus "Scalindua brodae", sp nov., Candidatus "Scalindua wagneri", sp nov., two new species of anaerobic ammonium oxidizing bacteria. Systematic and Applied Micro-biology, vol.26: 529–538. http://dx.doi.org/10.1078/072320203770865837.

Kartal B, Rattray J, Van Niftrik L A, et al. 2007, Candidatus "Anammoxoglobus propionicus", a new propionate oxidizing species of anaerobic ammonium oxidizing bacteria. Systematic and Applied Microbiology, vol.30(1): 39–49. http://dx.doi.org/10.1016/j.syapm.2006.03.004.

Quan Z X, Rhee S K, Zuo J E, et al. 2008, Diversity of ammonium-oxidizing bacteria in a granular sludge anaerobic ammonium oxidizing (anammox) reactor. Environmental Microbiology, vol.10(11): 3130–3139. http://dx.doi.org/10.1111/j.1462-2920.2008.01642.x.

Schmid M, Twachtmann U, Klein M, et al. 2000, Molecular evidence for genus level diversity of bacteria capable of catalyzing anaerobic ammonium oxidation. Systematic and Applied Microbiology, vol.23(1): 93–106. http://dx.doi.org/10.1016/S0723-2020(00)80050-8.

Schmid M C, Risgaard-Petersen N, Van de Vossenberg J, et al. 2007, Anaerobic ammonium-oxidizing bacteria in marine environments: widespread occurrence but low diversity. Environmental Microbiology, vol.9(6): 1476–1484. http://dx.doi.org/10.1011/j.1462-2920.2007.01266.x.

Gambi M C, Conti G and Bremec C S, 1998, Polychaete distribution, diversity and seasonality related to seagrass cover in shallow soft bottoms of the Tyrrhenian Sea (Italy). Scientia Marina, vol.62(1–2): 1–17. http://dx.doi.org/10.3989/scimar.1998.62n1-21.

Detwiler P M, Coe M F and Dexter D M, 2002, The benthic invertebrates of the Salton Sea: distribution and seasonal dynamics. Hydrobiologia, vol.473: 139–160. http://dx.doi.org/10.1023/A:1016537903644.

Shin P, 2001, Population dynamics and secondary pro-duction of Neathes glandicincta (polychaeta: nerididae) from a subtropical mudelat. Asian Marine Biology, vol.18: 117–127.

Shen P P, Lai H Y, Gu J-D, et al. 2006, Benthic infaunal composition and distribution at an intertidal wetland mudflat. Water, Air and Soil Pollution Focus, vol.6: 575–581. http://dx.doi.org/10.1007/978-1-4020-5478-5_22.

Li M, Yang H and Gu J-D, 2009, Phylogenetic diversity and axial distribution of microbes in the intestinal tract of the polychaete Neanthes glandicincta. Microbial Ecology, vol.58(4): 892–902. http://dx.doi.org/10.1007/s00248-009-9550-8.

Bright M and Sorgo A, 2003, Ultrastructural investigation of the trophosome in adults of Riftia pachyptila (Annelida, Siboglinidae). Invertebrate Biology, vol.122: 347–368. http://dx.doi.org/10.1111/j.1744-7410.2003.tb00099.x.

Sarma-Rupavtarm R B, Ge Z M, Schauer D B, et al. 2004, Spatial distribution and stability of the eight microbial species of the altered Schaedler flora in the mouse gastrointestinal tract. Applied and Environmental Microbiology, vol.70: 2791–2800. http://dx.doi.org/10.1128/AEM.70.5.2791-2800.2004.

Altschul S F, Gidh W, Miller W, et al. 1990, Basic local alignment search tool. Journal of Molecular Biology, vol.215: 403–410.

Cole J, Chai B, Farris R J, et al. 2005, The Ribosomal Database Project (RDP-II): sequences and tools for high-throughput rRNA analysis. Nucleic Acids Research, vol.33: D294–D296. http://dx.doi.org/10.1093/nar/gki038.

Thompson J D, Gibson T J, Plewniak F, et al. 1997, The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, vol.25(24): 4876–4882.

http://dx.doi.org/10.1093/nar/25.24.4876.

Tamura K, Dudley J, Nei M, et al. 2007, MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) soft-ware version 4.0. Molecular Biology and Evolution, vol.24(8): 1596–1599. http://dx.doi.org/10.1093/molbev/msm092.

Simberlo D, 1972, Properties of rarefaction diversity measurement. The American Naturalist, vol.106(949): 414–418.

http://dx.doi.org/10.1086/282781.

Mullins T D, Krest R L and Giovannoni S J, 1995, Genetic comparisons reveal the same unknown bacterial lineages in atlantic and pacific bacterioplankton communities. Limnology and Oceanography, vol.40(1): 148–158. http://dx.doi.org/10.4319/lo.1995.40.1.0148.

Hunter P R and Gaston M A, 1988, Numerical index of the discriminatory ability of typing systems: an application of Simpson's index of diversity. Journal of Clinical Microbiology, vol.26(11): 2465–2466.

Singleton D R, Furlong M A, Rathbun S L, et al. 2001, Quantitative comparisons of 16S rRNA gene sequence libraries from environmental samples. Applied and Environmental Microbiology, vol.67(9): 4374–4376. http://dx.doi.org/10.1128/AEM.67.9.4374–4376.2001.

Morin P J, 1999, Community Ecology. Black-Weel Science, Oxford, UK.

Savage D C, 1981, The effect of stress, diet and environment on the stability of the gastrointestinal microflora. Fortschritte Der Veterinarmedizin (Advances in Veterinary Medicine), vol.33: 23–31.

Matteuzzi D and Ferrari A, 1996, Gastrointestinal microbiology in human and animal. Annali Di Microbiologia Ed Enzimologia, vol.46(2): 211–214.

Frank D N and Pace N R, 2008, Gastrointestinal micro-biology enters the metagenomics era. Current Opinion in Gastroenterology, vol.24(1): 4–10. http://dx.doi.org/10.1097/MOG.0b013e3282f2b0e8.

Schmitt-Wagner D, Friedrich M W, Wagner B, et al. 2003, Phylogenetic diversity, abundance, and axial distribution of bacteria in the intestinal tract of two soil-feeding termites (Cubitermes spp). Applied and Environmental Microbiology, vol.69(10): 6007–6017. http://dx.doi.org/10.1128/AEM.69.10.6007-6017.2003.

Kohler T, Stingl U, Meuser K, et al. 2008, Novel line-ages of Planctomycetes densely colonize the alkaline gut of soil-feeding termites (Cubitermes spp.). Environmental Microbiology, vol.10: 1260–1270. http://dx.doi.org/10.1111/j.1462-2920.2007.01540.x.




DOI: http://dx.doi.org/10.26789/AEB.2016.01.011

Refbacks

  • There are currently no refbacks.


Copyright (c) 2016 Meng Li, Ji-Dong GU

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.