The Biosorption of Lead from Aqueous Solutions by a Wood-immobilized Fungal Biosorbent

VIEWS - 336 (Abstract) 84 (PDF)
Zomesh Artus Nath Maini, Niña Therese Bautista Flores, Enrico Praxides Muñoz

Abstract


Lead [Pb(II)] biosorption capacities of immobilized Talaromyces macrosporus on Moringa oleifera L. wood were compared against pure fungal and pure M. oleifera biomass. A Pb(II) contact test of 1000 ug/mL show similar Pb(II) removal of non-immobilized fungal biomass (F) and powdered wood colonized with fungi (WP+F), with WP+F producing more biomass. Powdered sorbents had higher Pb(II) uptake compared to whole sorbents analyzed through ICP-AES, possibly due to increased surface area for Pb(II) binding. FTIR analysis of the F, WP, and WP+F identified hydroxyl, amino, carbonyl, and sulfhydryl functional groups which constitute probable Pb(II)-affinitive binding sites. The biosorbents tested in a Continuous Flow Column (CF) adsorbed Pb(II) at 1000, 2000, and 4000 ug/mL in 30 minutes with the Pb(II) uptake of WP+F producing removal efficiencies at 91-95% regardless of initial Pb(II) concentration. WP+F also showed significantly higher q values than powdered wood (WP) at 42.67184.83 mg/g for the Pb(II) test concentrations. Recovery of Pb(II) from WP+F yielded 99.61% of adsorbed ions from 1000 ug/mL Pb(II), proving Pb(II) entrapment in the sorbent. This is the first study to describe biosorption capacities for T. macrosporus and M. oleifera softwood along with the wood’s viability as an immobilization scaffold. These results show the potential of using T. macrosporus immobilized on M. oleifera wood as a tool for removal of Pb(II) in wastewater with high Pb(II) concentrations.


Keywords


Fungi; Heavy metals; Immobilization; Biosorption; FTIR

Full Text:

PDF

References


Ahluwalia, S.S. & Goyal, D. (2007). Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresource Technology, 98(2007), 2243-2257.

https://doi.org/10.1016/j.biortech.2005.12.006

Akar T, Tunali S, & Cabuk A. (2007). Study on the Characterization of Lead (II) Biosorption by Fungus Aspergillus parasiticus. Applied Biochemistry and Biotechnology, 136, 389-406.

https://doi.org/10.1007/s12010-007-9032-8

Akar, T., Tunali, S. & Kiran, I. (2005). Botrytis cinereal as a new fungal biosorbent for removal of Pb(II) from aqueous solutions. Biochemical Engineering Journal, 25(3), 227-235.

https://doi.org/10.1016/j.bej.2005.05.006

Akhtar, N., Iqbal, J. & Iqbal, M. (2004). Removal and recovery of nickel (II) from aqueous solution by loofa sponge-immobilized biomass of Chlorella sorokiniana: characterization studies. Journal of Hazardous Materials, 85-94.

https://doi.org/10.1016/j.jhazmat.2004.01.002

Anwar, F., Latif, S., Ashraf, M. & Gilani, A.H. (2007). Moringa oleifera: a food plant with multiple medicinal uses. Phytotherapy Research, 21, 17-25.

https://doi.org/10.1002/ptr.2023

Assi, M.A., Hezmee, M.N., Haron, A.W., Sabri, M.Y. & Rajion, M.A. (2016). The detrimental effects of lead on human and animal health. Veterinary World, 9(6), 660-671.

https://doi.org/10.14202/vetworld.2016.660-671

Ayangbenro, A. S., & Babalola, O. O. (2017). A new strategy for heavy metal polluted environments: A review of microbial biosorbents. International Journal of Environmental Research and Public Health, 14(1), 1-16.

https://doi.org/10.3390/ijerph14010094

Aytar, P., Gedikli, S., Buruk, Y., Cabuk, A. & Burnak, N. (2014). Lead and nickel biosorption with a fungal biomass isolated from metal mine drainage: Box-Behnken experimental design. International Journal of Environmental Science and Technology, 11(6), 1631-1640.

https://doi.org/10.1007/s13762-013-0354-5

Basra, S., Iqbal, Z., Rehman, K., Rehman, H. & Ejaz, M.F. (2014). Time course changes in pH, electrical conductivity and heavy metals (Pb, Cr) of wastewater using Moringa oleifera Lam. Seed and alum, a comparative evaluation. Journal of Applied Research and Technology, 12(3), 560-567.

https://doi.org/10.1016/S1665-6423(14)71635-9

Cai, C.X., Xu, J., Deng, N.F., Dong, X.W., Tang, H., Liang, Y., Fan, X.W. & Li, Y.Z. (2016). A novel approach of utilization of the fungal conidia biomass to remove heavy metals from the aqueous solution through immobilization. Scientific Reports, 6(36546), 1-12.

https://doi.org/10.1038/srep36546

Chatterjee, A. & Abraham, J. (2019). Desorption of heavy metals from metal loaded sorbents and e-wastes: A review. Biotechnology Letters, 41(3), 319-333.

https://doi.org/10.1007/s10529-019-02650-0

Chen, B., Yuan, M., & Liu, H. (2011). Removal of polycyclic aromatic hydrocarbons from aqueous solution using plant residue materials as a biosorbent. Journal of Hazardous Materials, 188(1-3), 436-442.

https://doi.org/10.1016/j.jhazmat.2011.01.114

Cui, H., Li, F., Ren, B., Xue, C., Cui, C., & Wang, J. (2017). Biosorption of aquatic Pb2, Hg2, and Cd2 using a combined biosorbent - Aspergillus niger-Treated Rice Straw. Separation Science and Technology, 53(4), 626-635.

https://doi.org/10.1080/01496395.2017.1412463

Das, M., & Adholeya, A. (2015). Potential Uses of Immobilized Bacteria, Fungi, Algae, and Their Aggregates for Treatment of Organic and Inorganic Pollutants in Wastewater. ACS Symposium Series Water Challenges and Solutions on a Global Scale, 319-337.

https://doi.org/10.1021/bk-2015-1206.ch015

Deng, L., Su, Y., Su, H., Wang, X., & Zhu, X. (2006). Biosorption of copper (II) and lead (II) from aqueous solutions by nonliving green algae Cladophora fascicularis: Equilibrium, kinetics and environmental effects. Adsorption,12(4), 267-277.

https://doi.org/10.1007/s10450-006-0503-y

Dhankhar, R. & Hooda, A. (2011). Fungal biosorption - an alternative to meet the challenges of heavy metal pollution in aqueous solutions. Environmental Technology, 32(5), 467-491.

https://doi.org/10.1080/09593330.2011.572922

Ding, H., Luo, X., Zhang, X. & Yang, H. (2019). Alginate-immobilized Aspergillus niger: Characterization and biosorption removal of thorium ions from radioactive wastewater. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 562, 186-195.

https://doi.org/10.1016/j.colsurfa.2018.11.032.

Evans, P., Michell, A., & Schmalzl, K. (1992). Studies of the degradation and protection of wood surfaces. Wood Science and Technology,26(2), 151-163.

https://doi.org/10.1007/bf00194471

Fahey, L. M., Nieuwoudt, M. K., & Harris, P. J. (2017). Predicting the cell-wall compositions of Pinus radiata (radiata pine) wood using ATR and transmission FTIR spectroscopies. Cellulose, 24(12), 5275-5293.

https://doi.org/10.1007/s10570-017-1506-4

Faix, O. (1991). Classification of Lignins from Different Botanical Origins by FT-IR Spectroscopy. Holzforschung, 45(S1), 21-28.

https://doi.org/10.1515/hfsg.1991.45.s1.21

Fan, T., Liu, Y., Feng, B., Zeng, G., Yang, C., Zhou, M. & Wang, X. (2008). Biosorption of cadmium(II), zinc(II) and lead(II) by Penicillium simplicissimum: Isotherms, kinetics and thermodynamics. Journal of Hazardous Materials, 160(2-3), 655-661.

https://doi.org/10.1016/j.jhazmat.2008.03.038.

Galgoczy L, Yap A, & Marx F. (2019). Cysteine-Rich Antifungal Proteins from Filamentous Fungi are Promising Bioactive Natural Compounds in Anti-Candida Therapy. Israel Journal of Chemistry, 59(5), 360-370.

https://doi.org/10.1002/ijch.201800168

Ge, Y. & Li, Z. (2018). Application of Lignin and Its Derivatives in Adsorption of Heavy Metal Ions in Water: A Review. ACS Sustainable Chemistry and Engineering, 6(5), 7181-7192.

https://doi.org/10.1021/acssuschemeng.8b01345

Goyari, S., Devi, S., Bengyella, L., Khan, M., Sharma, C.K., Kalita, M.C., & Talukdar, N.C. (2015). Unveiling the optimal parameters for cellulolytic characteristics of Talaromyces verruculosus SGMNPf3 and its secretory enzymes. Journal of Applied Microbiology, 119(1), 88-98.

https://doi.org/10.1111/jam.12816

Gube M. (2016) Fungal Molecular Response to Heavy Metal Stress. In: Esser, K., Hoffmeister, D. (eds) Biochemistry and Molecular Biology. The Mycota (A Comprehensive Treatise on Fungi as Experimental Systems for Basic and Applied Research) vol III (pp. 47-68), Cham, Switzerland: Springer.

https://doi.org/10.1007/978-3-319-27790-5_4

Hammaini, A., Gonzales, F., Ballester, A., Blazquez M.L. and Munoz, J.A. (2007). Biosorption of heavy metals by activated sludge and their desorption characteristics. Journal of environmental Management, 84, 419-426.

https://doi.org/10.1016/j.jenvman.2006.06.015

Hauptman, M., Bruccoleri, R. & Woolf, A.D. (2017). An Update on Childhood Lead Poisoning. Clinical Pediatric Emergency Medicine, 18(3), 181-192.

https://doi.org/10.1016/j.cpem.2017.07.010.

Higgins, H. G., Stewart, C. M., & Harrington, K. J. (1961). Infrared spectra of cellulose and related polysaccharides. Journal of Polymer Science, 51(1), 59-84.

https://doi.org/10.1002/pol.1961.120510105

Iqbal, M. & Edyvean, R.G. (2004). Biosorption of lead, copper and zinc ions on loofa sponge immobilized biomass of Phanerochaete chrysosporium. Minerals Engineering, 17, 217-223.

https://doi.org/10.1016/j.mineng.2003.08.014

Iqbal, M. & Saeed, A. (2006). Entrapment of fungal hyphae in structural fibrous network of papaya wood to produce a unique biosorbent for the removal of heavy metals. Enzyme and Microbial Technology, 39, 996-1001.

https://doi.org/10.1016?j.enzmictec.2006.02.019

Iram, S., Shabbir, R., Zafar, H., & Javaid, M. (2015). Biosorption and Bioaccumulation of Copper and Lead by Heavy Metal-Resistant Fungal Isolates. Arabian Journal for Science and Engineering, 40(7), 1867-1873.

https://doi.org/10.1007/s13369-015-1702-1

Janusz, G., Pawlik, A., Sulej, J., Swiderska-Burek, U., Jarosz-Wilkolazka, A. & Paszczynski, A. (2017). Lignin degradation: microorganisms, enzymes involved, genomes analysis and evolution. FEMS Microbiology Reviews, 41(6), 941-962.

https://doi.org/10.1093/femsre/fux049

Jha, S., Chauhan, R. & Dikshit, SN. (2014). Fungal biomass as biosorbent for removal of heavy metal from industrial wastewater effluent. Asian Journal of Plant Sciences, 13(2), 93-97.

https://doi.org/10.3923/ajps.2014.93.97

Jin, W.J., Singh, K., Zondlo, J., Wang, J.X. & Brar, J. (2012). Pyrolysis kinetics of physical components of wood and wood-polymers using isoconversion method. Agriculture, 3, 12-32.

https://doi.org/10.3390/agriculture3010012

Kapoor, A. & Viraraghavan, T. (1995). Fungal biosorption - an alternative treatment option for heavy metal bearing wastewaters: A review. Bioresource Technology, 53(1995), 195-206.

https://doi.org/10.1016/0960-8524(95)00072-M

Kariuki, Z., Kiptoo, J. & Onyancha, D. (2016). Biosorption of lead and copper using rogers mushroom biomass ‘Lepiota hystrix’. South African Journal of Chemical Engineering, 23, 62-70.

https://doi.org/10.1016/j.sajce.2017.02.001

Li, X., Liao, D., Xu, X., Yang, Q., Zeng, G., Zheng, W., & Guo, L. (2008). Kinetic studies for the biosorption of lead and copper ions by Penicillium simplicissimum immobilized within loofa sponge. Journal of Hazardous Materials, 159(2-3), 610-615.

https://doi.org/10.1016/j.jhazmat.2008.02.068

Liang, C. Y., & Marchessault, R. H. (1959). Infrared spectra of crystalline polysaccharides. II. Native celluloses in the region from 640 to 1700 cm.1. Journal of Polymer Science, 39(135), 269-278.

https://doi.org/10.1002/pol.1959.1203913521

Long, J., Yuvaraja, G., Zhou, S., Mo, J., Li, H., Luo, D., . . . Reddy, G. M. (2019). Inactive Fusarium Fungal strains (ZSY and MJY) isolation and application for the removal of Pb(II) ions from aqueous environment. Journal of Industrial and Engineering Chemistry, 72, 442-452.

https://doi.org/10.1016/j.jiec.2018.12.047

Maini, Z.A.N., Aribal, K.M., Narag, R.M., Melad, J.K.L., Frejas, J.A., Arriola, L.A., Gulpeo, P.C., I.A. & Lopez, C. (2019). Lead (II) tolerance and uptake capacities of fungi isolated from a polluted tributary in the Philippines. Applied Environmental Biotechnology, 4(1), 18-29.

https://doi.org/10.26789/AEB.2019.01.004

Malik, D. S., Jain, C. K., & Yadav, A. K. (2016). Removal of heavy metals from emerging cellulosic low-cost adsorbents: A review. Applied Water Science, 7(5), 2113-2136.

https://doi.org/10.1007/s13201-016-0401-8

Mataka, L. M., Henry, E. M., Masamba, W. R., & Sajidu, S. M. (2006). Lead remediation of contaminated water using Moringa stenopetala and Moringa oleifera seed powder. International Journal of Environmental Science & Technology, 3(2), 131-139.

https://doi.org/10.1007/bf03325916

Michalak, I., Chojnacka, K. & Krowiak, AW. (2013). State of the art for the biosorption process - a review. Applied Biochemistry and Biotechnology, 170, 1389-1416.

https://doi.org/10.1007/s12010-013-0269-0

Mirzabeygi, M., Abbasnia, A., Yunesian, M., Nodehi, RN., Yousefi, N., Hadi, M. & Mahvi, AH. (2017). Heavy metal contamination and health risk assessment in drinking water of Sistan and Baluchistan, Southeastern Iran. Human and Ecological Risk Assessment: An International Journal, 23(8), 1893-1905.

https://doi.org/10.1080/10807039.2017.1322895

Mohaček-Grošev, V., Božac, R., & Puppels, G. J. (2001). Vibrational spectroscopic characterization of wild growing mushrooms and toadstools. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 57(14), 2815-2829.

https://doi.org/10.1016/s1386-1425(01)00584-4

Morin-Crini, N., Loiacono, S., Placet, V., Torri, G., Bradu, C., Kostić, M., Cosentino, C., Chanet, G., Martel, B., Lichtfouse, E. & Crini, G. (2018). Hemp-based adsorbents for sequestration of metals: A review. Environmental Chemistry Letters, 17(1), 393-408.

https://doi.org/10.1007/s10311-018-0812-x

Naumann, A. (2015). Fourier Transform Infrared (FTIR) Microscopy and Imaging of Fungi. Fungal Biology Advanced Microscopy in Mycology, 61-88.

https://doi.org/10.1007/978-3-319-22437-4_4

Naumann, A., Navarro-González, M., Peddireddi, S., Kües, U., & Polle, A. (2005). Fourier transform infrared microscopy and imaging: Detection of fungi in wood. Fungal Genetics and Biology, 42(10), 829-835.

https://doi.org/10.1016/j.fgb.2005.06.003

Njoki, M.A., Mercy, G., Nyagah, G. & Gachanja, A. (2016). Fourier transform infrared spectrophotometric analysis of functional groups found in Ricinus communis L. and Cucurbita maxima LAM. Roots, stems and leaves as heavy metal adsorbents. International Journal of Science, Environment and Technology, 5(3), 861-871.

Available from: www.ijset.net/journal/944.pdf

Obuseng, V., Nareetsile, F. & Kwaambwa, H.M. (2012). A study of the removal of heavy metals from aqueous solutions by Moringa oleifera seeds and amine-based ligand 1,4-bis[N,N-bis(2-picoyl)amino]butane. Analytica Chimica Acta, 730, 87-92.

https://doi.org/10.1016/j.aca.2012.01.054

Pagnanelli, F., Viggi, C., Mainelli, S. & Toro, L. (2009). Assessment of solid reactive mixtures for the development of biological permeable reactive barriers. Journal of Hazardous Materials, 170(2-3), 998-1005.

https://doi.org/10.1016/j.jhazmat.2009.05.081

Putra, W. P., Kamari, A., Yusoff, S. N., Ishak, C. F., Mohamed, A., Hashim, N., & Isa, I. M. (2014). Biosorption of Cu(II), Pb(II) and Zn(II) Ions from Aqueous Solutions Using Selected Waste Materials: Adsorption and Characterisation Studies. Journal of Encapsulation and Adsorption Sciences,04(01), 25-35.

https://doi.org/10.4236/jeas.2014.41004

Ramrakhiani, L., Ghosh, S., & Majumdar, S. (2016). Surface Modification of Naturally Available Biomass for Enhancement of Heavy Metal Removal Efficiency, Upscaling Prospects, and Management Aspects of Spent Biosorbents: A Review. Applied Biochemistry and Biotechnology,180(1), 41-78.

https://doi.org/10.1007/s12010-016-2083-y

Reddy, D. H., Harinath, Y., Seshaiah, K., & Reddy, A. (2010). Biosorption of Pb(II) from aqueous solutions using chemically modified Moringa oleifera tree leaves. Chemical Engineering Journal, 162(2), 626-634.

https://doi.org/10.1016/j.cej.2010.06.010

Sağ, Y. (2001). Biosorption of heavy metals by fungal biomass and modeling of fungal biosorption: A review. Separation and Purification Methods, 30(1), 1-48.

https://doi.org/10.1081/SPM-100102984

Saravanan, R., & Ravikumar, L. (2015). The Use of New Chemically Modified Cellulose for Heavy Metal Ion Adsorption and Antimicrobial Activities. Journal of Water Resource and Protection, 07(6), 530-545.

https://doi.org/10.4236/jwarp.2015.76042

Say, R., Yılmaz, N., & Denizli, A. (2003a). Biosorption of Cadmium, Lead, Mercury, and Arsenic Ions by the Fungus Penicillium purpurogenum. Separation Science and Technology, 38(9), 2039-2053.

https://doi.org/10.1081/ss-120020133

Say, R., Yilmaz, N., & Denizli, A. (2003b). Removal of Heavy Metal Ions Using the Fungus Penicillium canescens. Adsorption Science & Technology, 21(7), 643-650.

https://doi.org/10.1260/026361703772776420

Shakya, M., Sharma, P., Meryem, S. S., Mahmood, Q., & Kumar, A. (2016). Heavy Metal Removal from Industrial Wastewater Using Fungi: Uptake Mechanism and Biochemical Aspects. Journal of Environmental Engineering, 142(9).

https://doi.org/10.1061/(asce)ee.1943-7870.0000983

Sriharsha, D.V., Lokesh, K.R. & Savitha, J. (2017). Immobilized fungi on Luffa cylindrica: An effective biosorbent for the removal of lead. Journal of the Taiwan Institute of Chemical Engineers, 80, 589-595.

https://doi.org/10.1016/j.jtice.2017.08.032

Stohs, SJ. & Hartman, MJ. (2015). Review of the safety and efficacy of Moringa oleifera. Phytotherapy Research, 29(6), 796-804.

https://doi.org/10.1002/ptr.5325

Svobodova, K. & Novotny, C. (2018). Bioreactors based on immobilized fungi: bioremediation under non-sterile conditions. Applied Microbiology and Biotechnology, 102(1), 39-46.

https://doi.org/10.1007/s00253-017-8575-z

Traoré, M., Kaal, J., & Cortizas, A. M. (2017). Differentiation between pine woods according to species and growing location using FTIR-ATR. Wood Science and Technology,52(2), 487-504.

https://doi.org/10.1007/s00226-017-0967-9

Velkova, Z., Kirova, G., Stoytcheva, M., Kostadinova, S., Todorova, K. & Gochev, V. (2018). Immobilized microbial biosorbents for heavy metals removal. Engineering in Life Sciences, 18, 871-881.

https://doi.org/10.1002/elsc.201800017

Wong, D., Merrifield-Macrae, M. & Stillman, M. (2017). Lead(II) binding in metallothioneins. Metal Ions in Life Sciences, 17, 241-269.

https://doi.org/10.1515/9783110434330-009

Yang, Y., Yan, Z., Wang, L., Meng, Q., Yuan, Y. & Zhu, G. (2018). Constructing synergistic groups in porous aromatic frameworks for the selective removal and recovery of lead(ii) ions. Journal of Materials Chemistry A, 6(12), 5202–5207.

https://doi.org/10.1039/c8ta00382c

Zahmatkesh, M., Spanjers, H. & van Lier, JB. (2018). A novel approach for application of white rot fungi in wastewater treatment under non-sterile conditions: immobilization of fungi on sorghum. Environmental Technology, 39(16), 2030-2040.

https://doi.org/10.1080/09593330.2017.1347718

Zhao, G., Liu, X., Ren, S., Tan, W. & Fang, G. (2018). Quantitative comparison of surface properties of enzymatic hydrolysis lignin before and after degradation. Industrial Crops and Products, 125, 468-472.

https://doi.org/10.1016/j.indcrop.2018.09.020




DOI: http://dx.doi.org/10.26789/AEB.2019.02.004

Refbacks

  • There are currently no refbacks.


Copyright (c) 2019 Zomesh Artus Nath Maini, Niña Therese B Flores, Enrico Praxides Muñoz

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.