The Biosorption of Lead from Aqueous Solutions by a Wood-immobilized Fungal Biosorbent
Abstract
Keywords
Full Text:
References
Ahluwalia, S.S. & Goyal, D. (2007). Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresource Technology, 98(2007), 2243-2257.
https://doi.org/10.1016/j.biortech.2005.12.006
Akar T, Tunali S, & Cabuk A. (2007). Study on the Characterization of Lead (II) Biosorption by Fungus Aspergillus parasiticus. Applied Biochemistry and Biotechnology, 136, 389-406.
https://doi.org/10.1007/s12010-007-9032-8
Akar, T., Tunali, S. & Kiran, I. (2005). Botrytis cinereal as a new fungal biosorbent for removal of Pb(II) from aqueous solutions. Biochemical Engineering Journal, 25(3), 227-235.
https://doi.org/10.1016/j.bej.2005.05.006
Akhtar, N., Iqbal, J. & Iqbal, M. (2004). Removal and recovery of nickel (II) from aqueous solution by loofa sponge-immobilized biomass of Chlorella sorokiniana: characterization studies. Journal of Hazardous Materials, 85-94.
https://doi.org/10.1016/j.jhazmat.2004.01.002
Anwar, F., Latif, S., Ashraf, M. & Gilani, A.H. (2007). Moringa oleifera: a food plant with multiple medicinal uses. Phytotherapy Research, 21, 17-25.
https://doi.org/10.1002/ptr.2023
Assi, M.A., Hezmee, M.N., Haron, A.W., Sabri, M.Y. & Rajion, M.A. (2016). The detrimental effects of lead on human and animal health. Veterinary World, 9(6), 660-671.
https://doi.org/10.14202/vetworld.2016.660-671
Ayangbenro, A. S., & Babalola, O. O. (2017). A new strategy for heavy metal polluted environments: A review of microbial biosorbents. International Journal of Environmental Research and Public Health, 14(1), 1-16.
https://doi.org/10.3390/ijerph14010094
Aytar, P., Gedikli, S., Buruk, Y., Cabuk, A. & Burnak, N. (2014). Lead and nickel biosorption with a fungal biomass isolated from metal mine drainage: Box-Behnken experimental design. International Journal of Environmental Science and Technology, 11(6), 1631-1640.
https://doi.org/10.1007/s13762-013-0354-5
Basra, S., Iqbal, Z., Rehman, K., Rehman, H. & Ejaz, M.F. (2014). Time course changes in pH, electrical conductivity and heavy metals (Pb, Cr) of wastewater using Moringa oleifera Lam. Seed and alum, a comparative evaluation. Journal of Applied Research and Technology, 12(3), 560-567.
https://doi.org/10.1016/S1665-6423(14)71635-9
Cai, C.X., Xu, J., Deng, N.F., Dong, X.W., Tang, H., Liang, Y., Fan, X.W. & Li, Y.Z. (2016). A novel approach of utilization of the fungal conidia biomass to remove heavy metals from the aqueous solution through immobilization. Scientific Reports, 6(36546), 1-12.
https://doi.org/10.1038/srep36546
Chatterjee, A. & Abraham, J. (2019). Desorption of heavy metals from metal loaded sorbents and e-wastes: A review. Biotechnology Letters, 41(3), 319-333.
https://doi.org/10.1007/s10529-019-02650-0
Chen, B., Yuan, M., & Liu, H. (2011). Removal of polycyclic aromatic hydrocarbons from aqueous solution using plant residue materials as a biosorbent. Journal of Hazardous Materials, 188(1-3), 436-442.
https://doi.org/10.1016/j.jhazmat.2011.01.114
Cui, H., Li, F., Ren, B., Xue, C., Cui, C., & Wang, J. (2017). Biosorption of aquatic Pb2, Hg2, and Cd2 using a combined biosorbent - Aspergillus niger-Treated Rice Straw. Separation Science and Technology, 53(4), 626-635.
https://doi.org/10.1080/01496395.2017.1412463
Das, M., & Adholeya, A. (2015). Potential Uses of Immobilized Bacteria, Fungi, Algae, and Their Aggregates for Treatment of Organic and Inorganic Pollutants in Wastewater. ACS Symposium Series Water Challenges and Solutions on a Global Scale, 319-337.
https://doi.org/10.1021/bk-2015-1206.ch015
Deng, L., Su, Y., Su, H., Wang, X., & Zhu, X. (2006). Biosorption of copper (II) and lead (II) from aqueous solutions by nonliving green algae Cladophora fascicularis: Equilibrium, kinetics and environmental effects. Adsorption,12(4), 267-277.
https://doi.org/10.1007/s10450-006-0503-y
Dhankhar, R. & Hooda, A. (2011). Fungal biosorption - an alternative to meet the challenges of heavy metal pollution in aqueous solutions. Environmental Technology, 32(5), 467-491.
https://doi.org/10.1080/09593330.2011.572922
Ding, H., Luo, X., Zhang, X. & Yang, H. (2019). Alginate-immobilized Aspergillus niger: Characterization and biosorption removal of thorium ions from radioactive wastewater. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 562, 186-195.
https://doi.org/10.1016/j.colsurfa.2018.11.032.
Evans, P., Michell, A., & Schmalzl, K. (1992). Studies of the degradation and protection of wood surfaces. Wood Science and Technology,26(2), 151-163.
https://doi.org/10.1007/bf00194471
Fahey, L. M., Nieuwoudt, M. K., & Harris, P. J. (2017). Predicting the cell-wall compositions of Pinus radiata (radiata pine) wood using ATR and transmission FTIR spectroscopies. Cellulose, 24(12), 5275-5293.
https://doi.org/10.1007/s10570-017-1506-4
Faix, O. (1991). Classification of Lignins from Different Botanical Origins by FT-IR Spectroscopy. Holzforschung, 45(S1), 21-28.
https://doi.org/10.1515/hfsg.1991.45.s1.21
Fan, T., Liu, Y., Feng, B., Zeng, G., Yang, C., Zhou, M. & Wang, X. (2008). Biosorption of cadmium(II), zinc(II) and lead(II) by Penicillium simplicissimum: Isotherms, kinetics and thermodynamics. Journal of Hazardous Materials, 160(2-3), 655-661.
https://doi.org/10.1016/j.jhazmat.2008.03.038.
Galgoczy L, Yap A, & Marx F. (2019). Cysteine-Rich Antifungal Proteins from Filamentous Fungi are Promising Bioactive Natural Compounds in Anti-Candida Therapy. Israel Journal of Chemistry, 59(5), 360-370.
https://doi.org/10.1002/ijch.201800168
Ge, Y. & Li, Z. (2018). Application of Lignin and Its Derivatives in Adsorption of Heavy Metal Ions in Water: A Review. ACS Sustainable Chemistry and Engineering, 6(5), 7181-7192.
https://doi.org/10.1021/acssuschemeng.8b01345
Goyari, S., Devi, S., Bengyella, L., Khan, M., Sharma, C.K., Kalita, M.C., & Talukdar, N.C. (2015). Unveiling the optimal parameters for cellulolytic characteristics of Talaromyces verruculosus SGMNPf3 and its secretory enzymes. Journal of Applied Microbiology, 119(1), 88-98.
https://doi.org/10.1111/jam.12816
Gube M. (2016) Fungal Molecular Response to Heavy Metal Stress. In: Esser, K., Hoffmeister, D. (eds) Biochemistry and Molecular Biology. The Mycota (A Comprehensive Treatise on Fungi as Experimental Systems for Basic and Applied Research) vol III (pp. 47-68), Cham, Switzerland: Springer.
https://doi.org/10.1007/978-3-319-27790-5_4
Hammaini, A., Gonzales, F., Ballester, A., Blazquez M.L. and Munoz, J.A. (2007). Biosorption of heavy metals by activated sludge and their desorption characteristics. Journal of environmental Management, 84, 419-426.
https://doi.org/10.1016/j.jenvman.2006.06.015
Hauptman, M., Bruccoleri, R. & Woolf, A.D. (2017). An Update on Childhood Lead Poisoning. Clinical Pediatric Emergency Medicine, 18(3), 181-192.
https://doi.org/10.1016/j.cpem.2017.07.010.
Higgins, H. G., Stewart, C. M., & Harrington, K. J. (1961). Infrared spectra of cellulose and related polysaccharides. Journal of Polymer Science, 51(1), 59-84.
https://doi.org/10.1002/pol.1961.120510105
Iqbal, M. & Edyvean, R.G. (2004). Biosorption of lead, copper and zinc ions on loofa sponge immobilized biomass of Phanerochaete chrysosporium. Minerals Engineering, 17, 217-223.
https://doi.org/10.1016/j.mineng.2003.08.014
Iqbal, M. & Saeed, A. (2006). Entrapment of fungal hyphae in structural fibrous network of papaya wood to produce a unique biosorbent for the removal of heavy metals. Enzyme and Microbial Technology, 39, 996-1001.
https://doi.org/10.1016?j.enzmictec.2006.02.019
Iram, S., Shabbir, R., Zafar, H., & Javaid, M. (2015). Biosorption and Bioaccumulation of Copper and Lead by Heavy Metal-Resistant Fungal Isolates. Arabian Journal for Science and Engineering, 40(7), 1867-1873.
https://doi.org/10.1007/s13369-015-1702-1
Janusz, G., Pawlik, A., Sulej, J., Swiderska-Burek, U., Jarosz-Wilkolazka, A. & Paszczynski, A. (2017). Lignin degradation: microorganisms, enzymes involved, genomes analysis and evolution. FEMS Microbiology Reviews, 41(6), 941-962.
https://doi.org/10.1093/femsre/fux049
Jha, S., Chauhan, R. & Dikshit, SN. (2014). Fungal biomass as biosorbent for removal of heavy metal from industrial wastewater effluent. Asian Journal of Plant Sciences, 13(2), 93-97.
https://doi.org/10.3923/ajps.2014.93.97
Jin, W.J., Singh, K., Zondlo, J., Wang, J.X. & Brar, J. (2012). Pyrolysis kinetics of physical components of wood and wood-polymers using isoconversion method. Agriculture, 3, 12-32.
https://doi.org/10.3390/agriculture3010012
Kapoor, A. & Viraraghavan, T. (1995). Fungal biosorption - an alternative treatment option for heavy metal bearing wastewaters: A review. Bioresource Technology, 53(1995), 195-206.
https://doi.org/10.1016/0960-8524(95)00072-M
Kariuki, Z., Kiptoo, J. & Onyancha, D. (2016). Biosorption of lead and copper using rogers mushroom biomass ‘Lepiota hystrix’. South African Journal of Chemical Engineering, 23, 62-70.
https://doi.org/10.1016/j.sajce.2017.02.001
Li, X., Liao, D., Xu, X., Yang, Q., Zeng, G., Zheng, W., & Guo, L. (2008). Kinetic studies for the biosorption of lead and copper ions by Penicillium simplicissimum immobilized within loofa sponge. Journal of Hazardous Materials, 159(2-3), 610-615.
https://doi.org/10.1016/j.jhazmat.2008.02.068
Liang, C. Y., & Marchessault, R. H. (1959). Infrared spectra of crystalline polysaccharides. II. Native celluloses in the region from 640 to 1700 cm.1. Journal of Polymer Science, 39(135), 269-278.
https://doi.org/10.1002/pol.1959.1203913521
Long, J., Yuvaraja, G., Zhou, S., Mo, J., Li, H., Luo, D., . . . Reddy, G. M. (2019). Inactive Fusarium Fungal strains (ZSY and MJY) isolation and application for the removal of Pb(II) ions from aqueous environment. Journal of Industrial and Engineering Chemistry, 72, 442-452.
https://doi.org/10.1016/j.jiec.2018.12.047
Maini, Z.A.N., Aribal, K.M., Narag, R.M., Melad, J.K.L., Frejas, J.A., Arriola, L.A., Gulpeo, P.C., I.A. & Lopez, C. (2019). Lead (II) tolerance and uptake capacities of fungi isolated from a polluted tributary in the Philippines. Applied Environmental Biotechnology, 4(1), 18-29.
https://doi.org/10.26789/AEB.2019.01.004
Malik, D. S., Jain, C. K., & Yadav, A. K. (2016). Removal of heavy metals from emerging cellulosic low-cost adsorbents: A review. Applied Water Science, 7(5), 2113-2136.
https://doi.org/10.1007/s13201-016-0401-8
Mataka, L. M., Henry, E. M., Masamba, W. R., & Sajidu, S. M. (2006). Lead remediation of contaminated water using Moringa stenopetala and Moringa oleifera seed powder. International Journal of Environmental Science & Technology, 3(2), 131-139.
https://doi.org/10.1007/bf03325916
Michalak, I., Chojnacka, K. & Krowiak, AW. (2013). State of the art for the biosorption process - a review. Applied Biochemistry and Biotechnology, 170, 1389-1416.
https://doi.org/10.1007/s12010-013-0269-0
Mirzabeygi, M., Abbasnia, A., Yunesian, M., Nodehi, RN., Yousefi, N., Hadi, M. & Mahvi, AH. (2017). Heavy metal contamination and health risk assessment in drinking water of Sistan and Baluchistan, Southeastern Iran. Human and Ecological Risk Assessment: An International Journal, 23(8), 1893-1905.
https://doi.org/10.1080/10807039.2017.1322895
Mohaček-Grošev, V., Božac, R., & Puppels, G. J. (2001). Vibrational spectroscopic characterization of wild growing mushrooms and toadstools. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 57(14), 2815-2829.
https://doi.org/10.1016/s1386-1425(01)00584-4
Morin-Crini, N., Loiacono, S., Placet, V., Torri, G., Bradu, C., Kostić, M., Cosentino, C., Chanet, G., Martel, B., Lichtfouse, E. & Crini, G. (2018). Hemp-based adsorbents for sequestration of metals: A review. Environmental Chemistry Letters, 17(1), 393-408.
https://doi.org/10.1007/s10311-018-0812-x
Naumann, A. (2015). Fourier Transform Infrared (FTIR) Microscopy and Imaging of Fungi. Fungal Biology Advanced Microscopy in Mycology, 61-88.
https://doi.org/10.1007/978-3-319-22437-4_4
Naumann, A., Navarro-González, M., Peddireddi, S., Kües, U., & Polle, A. (2005). Fourier transform infrared microscopy and imaging: Detection of fungi in wood. Fungal Genetics and Biology, 42(10), 829-835.
https://doi.org/10.1016/j.fgb.2005.06.003
Njoki, M.A., Mercy, G., Nyagah, G. & Gachanja, A. (2016). Fourier transform infrared spectrophotometric analysis of functional groups found in Ricinus communis L. and Cucurbita maxima LAM. Roots, stems and leaves as heavy metal adsorbents. International Journal of Science, Environment and Technology, 5(3), 861-871.
Available from: www.ijset.net/journal/944.pdf
Obuseng, V., Nareetsile, F. & Kwaambwa, H.M. (2012). A study of the removal of heavy metals from aqueous solutions by Moringa oleifera seeds and amine-based ligand 1,4-bis[N,N-bis(2-picoyl)amino]butane. Analytica Chimica Acta, 730, 87-92.
https://doi.org/10.1016/j.aca.2012.01.054
Pagnanelli, F., Viggi, C., Mainelli, S. & Toro, L. (2009). Assessment of solid reactive mixtures for the development of biological permeable reactive barriers. Journal of Hazardous Materials, 170(2-3), 998-1005.
https://doi.org/10.1016/j.jhazmat.2009.05.081
Putra, W. P., Kamari, A., Yusoff, S. N., Ishak, C. F., Mohamed, A., Hashim, N., & Isa, I. M. (2014). Biosorption of Cu(II), Pb(II) and Zn(II) Ions from Aqueous Solutions Using Selected Waste Materials: Adsorption and Characterisation Studies. Journal of Encapsulation and Adsorption Sciences,04(01), 25-35.
https://doi.org/10.4236/jeas.2014.41004
Ramrakhiani, L., Ghosh, S., & Majumdar, S. (2016). Surface Modification of Naturally Available Biomass for Enhancement of Heavy Metal Removal Efficiency, Upscaling Prospects, and Management Aspects of Spent Biosorbents: A Review. Applied Biochemistry and Biotechnology,180(1), 41-78.
https://doi.org/10.1007/s12010-016-2083-y
Reddy, D. H., Harinath, Y., Seshaiah, K., & Reddy, A. (2010). Biosorption of Pb(II) from aqueous solutions using chemically modified Moringa oleifera tree leaves. Chemical Engineering Journal, 162(2), 626-634.
https://doi.org/10.1016/j.cej.2010.06.010
Sağ, Y. (2001). Biosorption of heavy metals by fungal biomass and modeling of fungal biosorption: A review. Separation and Purification Methods, 30(1), 1-48.
https://doi.org/10.1081/SPM-100102984
Saravanan, R., & Ravikumar, L. (2015). The Use of New Chemically Modified Cellulose for Heavy Metal Ion Adsorption and Antimicrobial Activities. Journal of Water Resource and Protection, 07(6), 530-545.
https://doi.org/10.4236/jwarp.2015.76042
Say, R., Yılmaz, N., & Denizli, A. (2003a). Biosorption of Cadmium, Lead, Mercury, and Arsenic Ions by the Fungus Penicillium purpurogenum. Separation Science and Technology, 38(9), 2039-2053.
https://doi.org/10.1081/ss-120020133
Say, R., Yilmaz, N., & Denizli, A. (2003b). Removal of Heavy Metal Ions Using the Fungus Penicillium canescens. Adsorption Science & Technology, 21(7), 643-650.
https://doi.org/10.1260/026361703772776420
Shakya, M., Sharma, P., Meryem, S. S., Mahmood, Q., & Kumar, A. (2016). Heavy Metal Removal from Industrial Wastewater Using Fungi: Uptake Mechanism and Biochemical Aspects. Journal of Environmental Engineering, 142(9).
https://doi.org/10.1061/(asce)ee.1943-7870.0000983
Sriharsha, D.V., Lokesh, K.R. & Savitha, J. (2017). Immobilized fungi on Luffa cylindrica: An effective biosorbent for the removal of lead. Journal of the Taiwan Institute of Chemical Engineers, 80, 589-595.
https://doi.org/10.1016/j.jtice.2017.08.032
Stohs, SJ. & Hartman, MJ. (2015). Review of the safety and efficacy of Moringa oleifera. Phytotherapy Research, 29(6), 796-804.
https://doi.org/10.1002/ptr.5325
Svobodova, K. & Novotny, C. (2018). Bioreactors based on immobilized fungi: bioremediation under non-sterile conditions. Applied Microbiology and Biotechnology, 102(1), 39-46.
https://doi.org/10.1007/s00253-017-8575-z
Traoré, M., Kaal, J., & Cortizas, A. M. (2017). Differentiation between pine woods according to species and growing location using FTIR-ATR. Wood Science and Technology,52(2), 487-504.
https://doi.org/10.1007/s00226-017-0967-9
Velkova, Z., Kirova, G., Stoytcheva, M., Kostadinova, S., Todorova, K. & Gochev, V. (2018). Immobilized microbial biosorbents for heavy metals removal. Engineering in Life Sciences, 18, 871-881.
https://doi.org/10.1002/elsc.201800017
Wong, D., Merrifield-Macrae, M. & Stillman, M. (2017). Lead(II) binding in metallothioneins. Metal Ions in Life Sciences, 17, 241-269.
https://doi.org/10.1515/9783110434330-009
Yang, Y., Yan, Z., Wang, L., Meng, Q., Yuan, Y. & Zhu, G. (2018). Constructing synergistic groups in porous aromatic frameworks for the selective removal and recovery of lead(ii) ions. Journal of Materials Chemistry A, 6(12), 5202–5207.
https://doi.org/10.1039/c8ta00382c
Zahmatkesh, M., Spanjers, H. & van Lier, JB. (2018). A novel approach for application of white rot fungi in wastewater treatment under non-sterile conditions: immobilization of fungi on sorghum. Environmental Technology, 39(16), 2030-2040.
https://doi.org/10.1080/09593330.2017.1347718
Zhao, G., Liu, X., Ren, S., Tan, W. & Fang, G. (2018). Quantitative comparison of surface properties of enzymatic hydrolysis lignin before and after degradation. Industrial Crops and Products, 125, 468-472.
https://doi.org/10.1016/j.indcrop.2018.09.020
DOI: https://doi.org/10.26789/AEB.2019.02.004
Refbacks
- There are currently no refbacks.
Copyright (c) 2019 Zomesh Artus Nath Maini, Niña Therese B Flores, Enrico Praxides Muñoz
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.