Nanocellulose-Graphene Oxide Hybrid Aerogel to Water Purification

VIEWS - 245 (Abstract) 78 (PDF)
Jie Wei, Shi-Han Gui, Jun-Hua Wu, Dan-Dan Xu, Yun Sun, Xiao-Ying Dong, Yang-Yong Dai, Yong-Feng Li

Abstract


The depletion of non-renewable resources and pollution of industrial wastewater are major challenges to the human security. Using green renewable resources to address the above problems coincides with the sustainable development of human society. In this study, we attend to design hybrid aerogel, derived from nanocellulose and graphene oxide (GO), to realize wastewater purification via adsorption behavior, benefitting from its high specific surface area and high porosity. Nanocellulose, isolated from Amorpha fruticosa Linn. as a shrub plant, and graphene oxide were combinely employed to prepare the hybird aerogel via freeze-drying process; and its purification ability to remove methylene blue(MB), congo red (CR) and waste oil in waste water was tested. The results indicate that the isolated nanocellulose bears abundant hydroxyl groups and high aspect ratio of ~500 with average diameter of ~30 nm, which is well distributed on the surface of graphene oxide sheet with side length of about 1~3 μm, both of which form the hybrid aerogel with porosity larger than 99%. The nanomaterials physically assemble its orignial aggregation state. When the mass ratio of nanocellulose and graphene oxide is 8 : 2, the hybrid aerogel reaches the highest adsorption capacity of 265.6mg/g and 21.5mg/g for MB and CR, respectively. The hybrid aerogel after hydrophobic treatment shows excellent oil adsorption capacity up to 25.6 g/g, which is beneficial to oil/water separation. This strategy provides potential great-application of the nanocellulose in water purification.

Keywords


Nanocellulose; Graphene Oxide; Hybrid Aerogel; Water Purification; Oil/Water Separation; Adsorption

Full Text:

PDF

References


Albadarin, A.B., Collins, M.N., Naushad, M., Shirazian, S., Walker, G., Mangwandi, C., 2017. Activated lignin–chitosan extruded blends for efficient adsorption of methylene blue. Chemical Engineering Journal, 307, 264-272.http://www.doi.org/10.1016/j.cej.2016.08.089

Chen, T., Shi, P., Zhang, J., Li, Y., Duan, T., Dai, L., Wang, L., Yu, X., Zhu, W., 2018. Natural polymer konjac glucomannan mediated assembly of graphene oxide as versatile sponges for water pollution control. Carbohydrate Polymers, 202, 425-433.http://www.doi.org/10.1016/j.carbpol.2018.08.133

Dong, X.Y., Zhuo, X., Wei, J., Zhang, G., Li, Y.F., 2017. Wood-based nanocomposite derived by in-situ formation of organic-inorganic hybrid polymer within wood via a sol-gel method. ACS Applied Materials & Interfaces, 9(10), 9070-9078.http://www.doi.org/10.1021/acsami.7b01174

Dotto, G.L., Moura, J.M., Cadaval, T.R.S., Pinto, L.A.A., 2013. Application of chitosan films for the removal of food dyes from aqueous solutions by adsorption. Chemical Engineering Journal, 214(4), 8-16.http://www.doi.org/10.1016/j.cej.2012.10.027

Geng, B., Wang, H., Wu, S., Ru, J., Tong, C., Chen, Y., Liu, H., Wu, S., Liu, X., 2017. Surface-tailored nanocellulose aerogels with thiol-functional moieties for highly efficient and selective removal of Hg (II) ions from water. ACS Sustainable Chemistry & Engineering, 5(12), 11715-11726.http://www.doi.org/10.1021/acssuschemeng.7b03188

Guo, Y., Wang, X., Hu, P., Peng, X., 2016. ZIF-8 coated polyvinylidenefluoride (PVDF) hollow fiber for highly efficient separation of small dye molecules. Applied Materials Today, 5, 103-110.http://www.doi.org/10.1016/j.apmt.2016.07.007

Hu, J., Deng., W., Chen, D., 2017. Ceria hollow spheres as an adsorbent for efficient removal of acid dye. ACS Sustainable Chemistry & Engineering, 5(4), 3570-3582.http://www.doi.org/10.1021/acssuschemeng.7b00396

Kadam, A.A., Lee, D.S., 2015. Glutaraldehyde cross-linked magnetic chitosan nanocomposites: Reduction precipitation synthesis, characterization, and application for removal of hazardous textile dyes. Bioresource Technology, 193, 563-567.http://www.doi.org/10.1016/j.biortech.2015.06.148

Khosravi, M., Azizian, S., 2015. Synthesis of a novel highly oleophilic and highly hydrophobic sponge for rapid oil spill cleanup. ACS Applied Materials & Interfaces, 7(45), 25326-25333.http://www.doi.org/10.1021/acsami.5b07504

Leitch, M.E., Li, C., Ikkala, O., Mauter, M.S., Lowry, G.V., 2016. Bacterial nanocellulose aerogel membranes: novel high-porosity materials for membrane distillation. Environmental Science & Technology Letters, 3(3), 85-91.http://www.doi.org/10.1021/acs.estlett.6b00030

Lin, R., Li, A., Zheng, T., Lu, L., Cao, Y., 2015. Hydrophobic and flexible cellulose aerogel as an efficient, green and reusable oil sorbent. RSC Advances, 5, 82027-82033.http://www.doi.org/10.1039/C5RA15194E

Mittal, A., Mittal, J., Malviya, A., Kaur, D., Gupta, V.K., 2010. Adsorption of hazardous dye crystal violet from wastewater by waste materials. Journal of Colloid & Interface Science, 343(2), 463-473.http://www.doi.org/Adsorption of hazardous dye crystal violet from wastewater by waste materials

Nalan, O.S.K., Aslı, C., Tamer, U., Turgay, T., 2015. Microalgae immobilized by nanofibrous web for removal of reactive dyes from wastewater. Industrial & Engineering Chemistry Research, 54(21), 5802-5809.http://www.doi.org/10.1021/acs.iecr.5b01033

Namasivayam, C., Kavitha, D., 2002. Removal of congo red from water by adsorption onto activated carbon prepared from coir pith, an agricultural solid waste. Dyes & Pigments, 54(1), 47-58.http://www.doi.org/10.1016/S0143-7208(02)00025-6

Nematollahzadeh, A., Shojaei, A., Karimi, M., 2015. Chemically modified organic/inorganic nanoporous composite particles for the adsorption of reactive black 5 from aqueous solution. Reactive & Functional Polymers, 86(26), 7-15.http://www.doi.org/10.1016/j.reactfunctpolym.2014.11.001

Ngah, W.S.W., Teong, L.C., Hanafiah, M.A.K.M., 2011. Adsorption of dyes and heavy metal ions by chitosan composites: A review. Carbohydrate Polymers, 83(4), 1446-1456.http://www.doi.org/10.1016/j.carbpol.2010.11.004

Phanthong, P., Reubroycharoen, P., Kongparakul, S., Samart, C., Wang, Z., Hao, X., Abudula, A., Guan, G., 2018. Fabrication and evaluation of nanocellulose sponge for oil/water separation. Carbohydrate Polymers, 190, 184-189.http://www.doi.org/10.1016/j.carbpol.2018.02.066

Piccin, J.S., Feris, L.A., Cooper, M., Gutterres, M., 2013. Dye adsorption by leather waste: mechanism diffusion, nature studies, and thermodynamic data. Journal of Chemical & Engineering Data, 58, 873-882. http://www.doi.org/10.1021/je301076n

Punzi, M., Anbalagan, A., Aragão, B.R., Svensson, B.M., Jonstrup, M., Mattiasson, B., 2015. Degradation of a textile azo dye using biological treatment followed by photo-Fenton oxidation: evaluation of toxicity and microbial community structure. Chemical Engineering Journal, 270, 290-299. http://www.doi.org/10.1016/j.cej.2015.02.042

Rosales, E., Pazos, M., Sanroman, M., 2011. Comparative efficiencies of the decolourisation of leather dyes by enzymatic and electrochemical treatments. Desalination, 278, 312-317. http://www.doi.org/10.1016/j.desal.2011.05.041

Salem, I.A., El-Maazawi, M.S., 2000. Kinetics and mechanism of color removal of methylene blue with hydrogen peroxide catalyzed by some supported alumina surfaces. Chemosphere, 41(8), 1173-1180.http://www.doi.org/10.1016/S0045-6535(00)00009-6

Sharma, Y.C., 2010. Optimization of parameters for adsorption of methylene blue on a low-cost activated carbon. Journal of Chemical & Engineering Data, 55(1), 435-439.http://www.doi.org/10.1021/je900408s

Sun, Z., Yao, G., Liu, M., Zheng, S., 2017. In situ synthesis of magnetic MnFe2 O4/diatomite nanocomposite adsorbent and its efficient removal of cationic dyes. Journal of the Taiwan Institute of Chemical Engineers, 71, 501-509.http://www.doi.org/10.1016/j.jtice.2016.12.013

Tsai, C.K., Liao, C.Y., Wang, H.P., Chien, Y.C., Jou, C.J., 2008. Pyrolysis of spill oils adsorbed on zeolites with product oils recycling. Marine Pollution Bulletin, 57(6), 895-898.http://www.doi.org/10.1016/j.marpolbul.2008.02.041

Wan, Z., Li, D., Jiao, Y., Ouyang, X., Chang, L., Wang, X., 2017. Bifunctional MoS2 coated melamine-formaldehyde sponges for efficientoil-water separation and water-soluble dye removal. Applied Materials Today, 9, 551-559. http://www.doi.org/10.1016/j.apmt.2017.09.013

Wei, J., Zhang, G., Dong, J., Wang, H., Guo, Y., Zhuo, X., Li, C., Liang, H., Gu, S., Li, C.H., Dong, X.Y., Li, Y.F., 2018. Facile, Scalable Spray-Coating of Stable Emulsion for Transparent Self-Cleaning Surface of Cellulose-Based Materials. ACS Sustainable Chemistry & Engineering, 6 (9), 11335-11344.http://www.doi.org/10.1021/acssuschemeng.8b00962

Xu, Z., Sun, H., Zhao, X., Gao, C., 2013. Ultrastrong fibers assembled from giant graphene oxide sheets. Advanced Materials, 25(2), 188-193.http://www.doi.org/10.1002/adma.201203448

Yang, H., Sheikhi, A., Tg, V.D.V., 2016. Reusable green aerogels from crosslinked hairy nanocrystalline cellulose and modified chitosan for dye removal. Langmuir, 32(45), 11771-11779.http://www.doi.org/10.1021/acs.langmuir.6b03084

Yang, Y., Deng, Y., Tong, Z., Wang, C., 2014. Renewable Lignin-Based Xerogels with Self-Cleaning Properties and Superhydrophobicity. ACS Sustainable Chemistry & Engineering, 2(7), 1729-1733.http://www.doi.org/10.1021/acssuschemeng.7b00440

Yim, U.H., Kim, M., Ha, S.Y., Ha, S., Kim, S., Shim, W., 2012. Oil spill environmental forensics: the Hebei Spirit oil spill case. Environmental Science & Technology, 46(12), 6431-6437.http://www.doi.org/10.1021/es3004156

Zhou, X., Zhang, Z., Xu, X., Men, X., Zhu, X., 2013. Facile fabrication of superhydrophobic sponge with selective absorption and collection of oil from water. Industrial & Engineering Chemistry Research, 52(27), 9411-9416.http://www.doi.org/10.1021/ie400942t

Zhu, H., Luo, W., Ciesielski, P.N., Fang, Z.Q., Zhu, J.Y., Henriksson.G., Himmel.M.E., Hu.L.B., 2016. Wood-eerived materials for green electronics, biological devices, and energy applications. Chemical Reviews, 116(16), 9305-9374.http://www.doi.org/10.1021/acs.chemrev.6b00225

Zhu, H., Qiu, S., Jiang, W., Wu, D., Zhang, C., 2011. Evaluation of electrospun polyvinyl chloride/polystyrene fibers as sorbent materials for oil spill cleanup. Environmental Science & Technology, 45(10), 4527-4531. http://www.doi.org/10.1016/j.aca.2018.02.016

Zhuo, X., Liu, C., Pan, R., Dong, X.Y., Li, Y.F., 2017. Nanocellulose mechanically isolated from Amorpha fruticosa Linn. ACS Sustainable Chemistry & Engineering, 5(5), 4414-4420.http://www.doi.org/10.1021/acssuschemeng.7b00478

Zhuo, X., Wei, J., Xu, J., Pan, R., Zhang, G., Guo, Y.L., Dong, X.Y., Long, L., Li, Y.F., 2017. Nanocellulose isolation from Amorpha fruticose by an enzyme-assisted pretreatment. Applied Environmental Biotechnology, 2(1), 34-39.http://www.doi.org/10.26789/AEB.2017.01.005




DOI: http://dx.doi.org/10.26789/AEB.2019.01.003

Refbacks

  • There are currently no refbacks.


Copyright (c) 2019 Yong-Feng Li

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.