Akamigbo, F.O.R. 1984. The accuracy of field textures in a humid tropical environment. Soil Survey and Land Evaluation. 4: 63–70.
Amaechi, H.I., Maureen, N.A., Akudo, N.A. 2014. Analysis of rainfall variation in the Niger Delta region of Nigeria. https://doi.org/10.9790/2402-08162530
Anaya, C.A. and Huber-Sannwald, E. 2015. Long-term soil organic carbon and nitrogen dynamics after conversion of tropical forest to traditional sugarcane agriculture in East Mexico. Soil & Tillage Research, 147: 20-29. doi.org/10.1016/j.still.2014.11.003
Bottinelli, N., Angers, D.A., Hallaire, V.,Michot, D., Le Guillou, C., Cluzeau, D., Heddadj, D., Menasseri-Aubry. S. 2017. Tillage and fertilization practices affect soil aggregate stability in a Humic Cambisol of Northwest France. Soil and Tillage Research, 170: 14-17. doi.org/10.1016/j.still.2017.02.008.
Carrizo, M.E., Alesso, C.A., Cosentino, D., Imhoff, S. 2015. Aggregation agents and structural stability in soils with different texture and organic carbon contents. Scientia Agricola, 72: 75-82. doi.org/10.1590/0103-9016-2014-0026
Cheng, M., Yun X., Zhijing, X., Shaoshan, A. 2015. Soil aggregation and intra-aggregate carbon fractions in relation to vegetation succession on the Loess Plateau, China. doi.org/10.1016/j.catena.2014.09.006
de Souza, G.P., de Figueiredo, C.C., de Sousa, D.M.G. 2016. Relationships between labile soil organic carbon fractions under different soil management systems. Scientia Agricola, 73(6): 535-542. doi.org/10.1590/0103-9016-2015-0047
Duchicela, J., Sullivan, T.S., Bontti, E., Bever, J.D. 2013. Soil aggregate stability increase is strongly related to fungal community succession along an abandoned agricultural field chronosequence in the Bolivian Altiplano. Journal of Applied Ecology, 50(5): 1266-1273. doi.org/10.1111/1365-2664.12130
Egan, G., Michael, J. C., Fornara, D. A. (2018). Effects of long-term grassland management on the carbon and nitrogen pools of different soil aggregate fractions. Science of Total Environment, 613-614: 810-819. doi.org/10.1016/j.scitotenv.2017.09.165.
Flint, L.E. and Flint, A.L. 2002. Pore-size distribution. In: Dane, J.H., Topp, G.C. (eds.). Methods of Soil Analysis, Part I. Physical Methods. Soil Science Society of America. Madison, WI, USA, pp. 246–253. https://indico.ictp.it/event/a06222/material/4/48.
Gee, G.W. and Bauder, J.W. 1986. Particle size analysis. In: Klute A. (ed). Methods of Soil Analysis. Part 1: Agronomy Monograph. No. 9. 2nd (ed). pp. 383-411.
Grossman, R.B. and Reinsch, T.G. 2002. Bulk density and linear extensibility. In: Methods of Soil Analysis, Part 4: Physical Methods. In: Dane, J.H., Topp, C.C. (eds). ASA and SSSA, Madison, WI., USA.,pp: 201-228.
Gunina, A. and Kuzyakov, Y. 2015. Sugars in soil and sweet s for microorganisms: Review of origin, content, composition and fate. Soil Biology and Biochemistry, 90: 87–100. doi.org/10.1016/j.soilbio.2015.07.021.
Guo, Z.C., Zhang, Z.B., Zhou, H., Rahman, M.T., Wang, D.Z., Guo, X.S., Li, L.J., Peng, X.H. 2018. Long-term animal manure application promoted biological binding agents but not soil aggregation in a Vertisol. Soil & Tillage. Research., 180:232-237. doi.org/10.1016/j.still.2018.03.007.
Guo, Z., Zhang, J., Fan, J., Yang, X., Yi, Y., Han, X., Wang, D., Zhu, P., Peng, X. 2019. Does animal manure application improve soil aggregation? Insights from nine long-term fertilization experiments. Science of the Total Environment, 660:1029-1037. doi.org/10.1016/j.scitotenv.2019.01.051
Hillel, D. (2004). Introduction to Environmental Soil Physics. Elsevier Academic Press, Amsterdam, The Netherlands.
Kemper, W.D., Rosenau, R.C., 1986. Aggregate stability and size distribution. In: Klute, A. (ed.), Methods of Soil Analysis. Part 1, 2nd ed. Am. Soc. Agron., Madison (WI), pp. 425–442.
Lan, J., Qixia, L., Mingzhi, H., Yongxiang, J., Ning, H. 2021. Afforestation-induced large macroaggregate formation promotes soil organic carbon accumulation in degraded karst area. Forest Ecology and Management. doi.org/10.1016/j.foreco.2021.119884. 505.
Larré Larrouy, M.C., Blanchart, E., Albrecht, A., Feller, C. 2004. Carbon and monosaccharides of a tropical Vertisol under pasture and market gardening: distribution in secondary organomineral separates. Geoderma, 119: 163–178.
Liu, W., Wei, Y., Li, R., Chen, Z. Wang, H., Virk, A.L., Lal,,R., Zhao, X., Zhang, H. 2022. Improving soil aggregates stability and soil organic carbon sequestration by no-till and legume-based crop rotations in the North China Plain. Science of the Total Environment, 847:157518. http://dx.doi.org/10.1016/j.scitotenv.2022.157518
Lykhman, V., Klimenko, A., Dubinina, M., Naimi, O., Polienko, E. 2020. Influence of humic preparations on the content of carbohydrates in structural units and their water resistance. E3S Web Conf., 210, 04005. doi.org/10.1051/e3sconf/202021004005
Martins, M.D.R., Angers, D.A., Corá, J.E. 2012. Carbohydrate Composition and Water-Stable Aggregation of an Oxisol as Affected by Crop Sequence under No-Till. Soil Science Society of America Journal, 76(2): 475-484. doi.org/10.2136/sssaj2011.0110
Nelson, D.W. and Sommers, L.C. 1996. Total carbon, organic carbon and organic matter, in Sparks D. L. (ed.): Methods of Soil Analysis, Part 3—Chemical Methods. SSSA, Madison, WI, USA, pp. 539–579. doi.org/10.2136/sssabookser5.3.c34
Okolo, C. C., Girmay G.S., Amanuel. Z., Mitiku, H. Peter N. E. (2020). Accumulation of organic carbon in various soil aggregate sizes under different land use systems in a semi-arid environment. 297, 106924. doi.org/10.1016/j.agee.2020. 106924},
Parwada, C., and Van Tol, J. 2016. Soil properties influencing erodibility of soils in the Ntabelanga area, Eastern Cape Province, South Africa. Acta Agriculturue Scandinavica, Section D. Soil Plant Sci., 67, 1-10. doi.org/10.1080/09064710.2016.1220614
Poeplau, C., Vos, C., Axel, D. 2017. Soil organic carbon stocks are systematically overestimated by misuse of the parameters bulk density and rock fragment content. Soil 3:61. doi: 10.5194/soil-3-61-2017
Ratnayake, R. R., Seneviratne, G., and Kulasooriya, S. A. 2013. Effect of soil carbohydrates on nutrient availability in natural forests and cultivated lands in Sri Lanka. Eurasian Soil Science., 46: 579-586. doi.org/10.1134/S1064229313050177
Reynolds, W.D., Elick, D.E., Youngs, E.G., Amoozegar, A., Bootink, N.W. 2002. Saturated and field-unsaturated water flow parameters: laboratory methods. In: J.H. Dane and C.G. Topp (Eds.), Methods of soil analysis, Part 4: Physical methods. Soil Science Society of America, pp. 802-817. https://doi.org/10.2136/sssabookser5.4
Safarik, I. and Santruckova, H. 1992. Direct determination of total soil carbohydrate content. Plant and Soil, 143: 109-114.
SAS 1996. Procedures in the SAS/STAT Guide for Personal Computers. Version 6, SAS Institute Inc., North Carolina, USA.
Shi, J., Lei, D., Anna, G., Sulaiman, A., Kaibo, W., Jiwei Li, Y., Liu, Z., Shangguan, Kuzyakov, Y. 2023. Carbon stabilization pathways in soil aggregates during long-term forest succession: Implications from δ13C signatures. Soil Biology and Biochemistry, 180: 108988. doi.org/10.1016/j.soilbio.2023.108988.
Udom, B.E. and Ogunwole, J.O. 2015. Soil organic carbon, nitrogen, and phosphorus distribution in stable aggregates of an ultisol under contrasting land use and management history. Journal of. Plant Nutrition and. Soil Science. 178: 460–467. doi: 10.1002/jpln.201400535
Udom, B.E. and Simon, U.G. 2020. Effect of land-use on particulate organic carbon and carbohydrates distributions in dry- and wet-sieved stable aggregates in an ultisol. Nigeria. Journal of Soil Sciemce, 30(2): 1-8. doi.org/10.36265/njss.2020.300301
Udom, B.E., Ikiriko, M.E., Gogo, A.J., Dickson, A.A. 2024. Water dispersible clay and micro structure of soils from coastal plain sands, shale and false-bedded sandstones. Soil Security 16:100137 doi.org/10.1016/j.soisec.2024.100137.
Udom, B.E., Udom, G.J., Otta, J.T. 2022. Breakdown of dry aggregates by water drops after applications of poultry manure and spent mushroom wastes. Soil & Tillage Research, 217:106267. doi.org/10.1016/j.still.2021.105267
Ye, L., Wenfeng, T., Linchuan, F., Lingling, J. 2019. Spatial analysis of soil aggregate stability in a small catchment of the Loess Plateau, China: II. Spatial prediction, Soil and Tillage Research, 192: 1-11. doi.org/10.1016/j.still.2019.03.009.
Yılmaz, E., Çanakcı, M., Topakcı, M., Sönmez, S., Ağsaran, B., Alagöz, Z., Çıtak, S., Uras, D.S. 2019. Effect of vineyard pruning residue application on soil aggregate formation, aggregate stability and carbon content in different aggregate sizes. Catena, 183: 104219. doi.org/10.1016/j.catena.2019.104219
Zhang, C., Guobin, L., Sha, X., Caili, S. 2013. Soil organic carbon and total nitrogen storage as affected by land use in a small watershed of the Loess Plateau, China. European Journal of Soil Biology, 54:16-24. doi.org/10.1016/j.ejsobi.2012.10.007.
Zhang, S., Wang, R., Yang, X., Sun, B., Li, Q. 2016. Soil aggregation and aggregating agents as affected by long term contrasting management of an Anthrosol. Scientific Reports, 6(1): 39107. https://doi.org/10.1038/srep39107
Zhao, F.Z., Ren, C.J., Han, X.H., Yang, G.H., Wang, J., Doughty, R. 2018. Changes of soil microbial and enzyme activities are linked to soil C, N and P stoichiometry in afforested ecosystems. doi.org/10.1016/j.foreco.2018.06.011
Zhaoa, J., Chena, S., Hua, R., Lia, Y. 2017. Aggregate stability and size distribution of red soils under different land uses integrally regulated by soil organic matter, and iron and aluminum oxides. Soil & Tillage Research, 167:73–79. dx.doi.org/10.1016/j.still.2016.11.007
Zubair, M., Anwar, F., Ashraf, M., Ashraf, A., & Chatha, S. A. S. (2012). Effect of green and farmyard manure on carbohydrates dynamics of salt-affected soil. Journal Soil Science and Plant Nutrition, 12: 497-510. doi.org/10.4067/S0718-951620120050000