Recent advancements in pesticide mitigation using engineered Escherichia coli strains
Abstract
Keywords
Full Text:
References
Afolabi, O.K., Aderibigbe, F.A., Folarin, D.T., Arinola, A., Wusu, A.D., 2019. Oxidative stress and inflammation following sub-lethal oral exposure of cypermethrin in rats: Mitigating potential of epicatechin. Heliyon, 5(8).
https://doi.org/10.1016/j.heliyon.2019.e0227
Al-Ani, M. A., Hmoshi, R.M., Kanaan, I.A., Thanoon, A.A., 2019. Effect of pesticides on soil microorganisms. In Journal of physics: Conference series, Vol. 1294, No. 7, p. 072007. IOP Publishing.
https://doi.org/10.1088/1742-6596/1294/7/072007
Alengebawy, A., Abdelkhalek, S.T., Qureshi, S.R., Wang, M.Q., 2021. Heavy metals and pesticides toxicity in agricultural soil and plants: Ecological risks and human health implications. Toxics, 9(3): 42.
https://doi.org/10.3390/toxics9030042
Ali, R.I. and Ibrahim, M.A., 2018. Malathion induced testicular toxicity and oxidative damage in male mice: the protective effect of curcumin. Egyptian Journal of Forensic Sciences, 8: 1-13.
https://doi.org/10.1186/s41935-018-0099-x
Ansari, I., El-Kady, M.M., Arora, C., Sundararajan, M., Maiti, D., Khan, A., 2021. A review on the fatal impact of pesticide toxicity on environment and human health. Global Climate Change, 361-391.
https://doi.org/10.1016/B978-0-12-822928-6.00017-4
Arab, S.A., Nikravesh, M.R., Jalali, M., Fazel, A., 2018. Evaluation of oxidative stress indices after exposure to malathion and protective effects of ascorbic acid in ovarian tissue of adult female rats. Electronic physician, 10(5): 6789.
https://doi.org/10.19082%2F6789
Aria, M. and Cuccurullo, C., 2017. bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of informetrics, 11(4): 959-975.
https://doi.org/10.1016/J.JOI.2017.08.007
Bansal, O.P., 2011. Fate of pesticides in the environment. Journal of the Indian Chemical Society, 88(10): 1525.
https://hero.epa.gov/hero/index.cfm/reference/details/reference_id/2664254
Bhatt, P., Zhou, X., Huang, Y., Zhang, W., Chen, S., 2021. Characterization of the role of esterases in the biodegradation of organophosphate, carbamate, and pyrethroid pesticides. Journal of Hazardous Materials, 411: 125026.
https://doi.org/10.1016/j.jhazmat.2020.125026
Bornman, M.S., Aneck-Hahn, N.H., De Jager, C., Wagenaar, G.M., Bouwman, H., Barnhoorn, I.E., Heindel, J.J., 2017. Endocrine disruptors and health effects in Africa: a call for action. Environmental health perspectives, 125(8): 085005.
https://doi.org/10.1289/EHP1774
Botwe, B.O., Ntow, W.J., Nyarko, E., Kelderman, P., 2012. Evaluation of occupational and vegetable dietary exposures to current-use agricultural pesticides in Ghana. Pesticides—recent trends in pesticide residue assay. In Tech, 46-62.
http://dx.doi.org/10.5772/80105
Bouaziz, C., Graiet, I., Salah, A., Ben Salem, I., Abid, S., 2020. Influence of bifentrin, a pyrethriod pesticide, on human colorectal HCT-116 cells attributed to alterations in oxidative stress involving mitochondrial apoptotic processes. Journal of Toxicology and Environmental Health, Part A, 83(9): 331-340.
https://doi.org/10.1080/15287394.2020.1755756
Brühl, C.A. and Zaller, J.G., 2019. Biodiversity decline as a consequence of an inappropriate environmental risk assessment of pesticides. Frontiers in Environmental Science, 7: 464007.
https://doi.org/10.3389/fenvs.2019.00177
Chaudhry, G.R., Ali, A.N., Wheeler, W.B., 1988. Isolation of a methyl parathion-degrading Pseudomonas sp. that possesses DNA homologous to the opd gene from a Flavobacterium sp. Applied and Environmental Microbiology, 54(2): 288-293.
https://doi.org/10.1128/aem.54.2.288-293.1988
Chen, J., Su, Y., Lin, F., Iqbal, M., Mehmood, K., Zhang, H., Shi, D., 2021. Effect of paraquat on cytotoxicity involved in oxidative stress and inflammatory reaction: A review of mechanisms and ecological implications. Ecotoxicology and Environmental Safety, 224: 112711.
https://doi.org/10.1016/j.ecoenv.2021.112711
Cohn, B.A., Wolff, M.S., Cirillo, P.M., Sholtz, R.I., 2007. DDT and breast cancer in young women: new data on the significance of age at exposure. Environmental health perspectives, 115(10): 1406-1414.
https://doi.org/10.1289/ehp.10260
Damalas, C.A. and Eleftherohorinos, I.G., 2011. Pesticide exposure, safety issues, and risk assessment indicators. International journal of environmental research and public health, 8(5): 1402-1419.
https://doi.org/10.3390/ijerph8051402
Degeronimo, K., 2015. Fragile ecosystems: pesticide use in conventional agriculture.
Diagboya, P.N., Mtunzi, F.M., Adebowale, K.O., Olu-Owolabi, B.I., 2021. Assessment of the effects of soil organic matter and iron oxides on the individual sorption of two polycyclic aromatic hydrocarbons. Environmental Earth Sciences, 80: 1-12.
https://dx.doi.org/10.1002/elsc.200520098
Ding, J., Zhou, Y., Wang, C., Peng, Z., Mu, Y., Tang, X., Huang, Z., 2020. Development of a whole-cell biocatalyst for diisobutyl phthalate degradation by functional display of a carboxylesterase on the surface of Escherichia coli. Microbial Cell Factories, 19: 1-11.
https://dx.doi.org/10.1186/s12934-020-01373-6
Dumas, D.P., Caldwell, S.R., Wild, J.R., Raushel, F.M., 1989. Purification and properties of the phosphotriesterase from Pseudomonas diminuta. Journal of Biological Chemistry, 264(33): 19659-19665.
https://doi.org/10.1016/S0021-9258(19)47164-0
Elgueta, S., Santos, C., Lima, N., Diez, M.C., 2016. Immobilization of the white-rot fungus Anthracophyllum discolor to degrade the herbicide atrazine. Amb Express, 6: 1-11.
https://dx.doi.org/10.1186/s13568-016-0275-z
Erdoğmuş, S F., Eren, Y., Akyıl, D., Özkara, A., Konuk, M., Sağlam, E., 2015. Evaluation of in vitro genotoxic effects of benfuracarb in human peripheral blood lymphocytes. Fresenius Environmental Bulletin, 24(3): 796-799.
Erinle, K. O., Jiang, Z., Ma, B., Li, J., Chen, Y., Ur-Rehman, K., Zhang, Y., 2016. Exogenous calcium induces tolerance to atrazine stress in Pennisetum seedlings and promotes photosynthetic activity, antioxidant enzymes and psbA gene transcripts. Ecotoxicology and environmental safety, 132: 403-412.
https://dx.doi.org/10.1016/j.ecoenv.2016.06.035
Ernst, F., Alonso, B., Colazzo, M., Pareja, L., Cesio, V., Pereira, A., Pérez-Parada, A., 2018. Occurrence of pesticide residues in fish from south American rainfed agroecosystems. Science of the total environment, 631: 169-179.
https://dx.doi.org/10.1016/j.scitotenv.2018.02.320
FAO, W., 2019. Detoxifying Agriculture and Health from Highly Hazardous Pesticides: a Call for Action, vol. 24. FAO and WHO. Rome.
Feld, L., Hjelmsø, M. H., Nielsen, M. S., Jacobsen, A. D., Rønn, R., Ekelund, F., Jacobsen, C. S., 2015. Pesticide side effects in an agricultural soil ecosystem as measured by amoA expression quantification and bacterial diversity changes. PLoS One, 10(5): e0126080.
https://dx.doi.org/10.1371/journal.pone.0126080
Filimon, M.N., Voia, S.O., Popescu, R.O.X.A.N.A., Dumitrescu, G.A.B.I., Ciochina, L.P., Mituletu, M., Vlad, D.C., 2015. The effect of some insecticides on soil microorganisms based on enzymatic and bacteriological analyses. Romanian Biotechnological Letters, 20(3): 10439-10447.
Furst, A.L., Hoepker, A.C., Francis, M.B., 2017. Quantifying hormone disruptors with an engineered bacterial biosensor. ACS central science, 3(2): 110-116.
https://dx.doi.org/10.1021/acscentsci.6b00322
Grijalbo, L., Gutierrez Mañero, F.J., Fernandez-Pascual, M., Lucas, J.A., 2015. Photosynthetic and ultrastructure parameters of maize plants are affected during the phyto-rhizoremediation process of degraded metal working fluids. International journal of phytoremediation, 17(12): 1183-1191.
https://dx.doi.org/10.1080/15226514.2015.1045132
Hassaan, M.A., and El Nemr, A., 2020. Egyptian Journal of Aquatic Research.
https://doi.org/10.1016/j.ejar.2020.08.007
Huang, D., Hu, C., Zeng, G., Cheng, M., Xu, P., Gong, X., Xue, W., 2017. Combination of Fenton processes and biotreatment for wastewater treatment and soil remediation. Science of the Total Environment, 574: 1599-1610.
https://dx.doi.org/10.1016/j.scitotenv.2016.08.199
Huang, H.S., Lee, K.W., Ho, C.H., Hsu, C.C., Su, S. B., Wang, J.J., Huang, C.C., 2017. Increased risk for hypothyroidism after anticholinesterase pesticide poisoning: a nationwide population-based study. Endocrine, 57: 436-444.
https://dx.doi.org/10.1007/s12020-017-1373-7
Huang, Y., Xiao, L., Li, F., Xiao, M., Lin, D., Long, X., Wu, Z., 2018. Microbial degradation of pesticide residues and an emphasis on the degradation of cypermethrin and 3-phenoxy benzoic acid: a review. Molecules, 23(9): 2313.
https://dx.doi.org/10.3390/molecules23092313
Imoro, Z.A., Larbi, J., Duwiejuah, A.B., 2019. Pesticide availability and usage by farmers in the northern region of Ghana. Journal of Health and Pollution, 9(23): 190906.
https://dx.doi.org/10.5696/2156-9614-9.23.190906
Itoh, K., Kanda, R., Sumita, Y., Kim, H., Kamagata, Y., Suyama, K., Tiedje, J.M., 2002. tfdA-like genes in 2, 4-dichlorophenoxyacetic acid-degrading bacteria belonging to the Bradyrhizobium-Agromonas-Nitrobacter-Afipia cluster in α-Proteobacteria. Applied and Environmental Microbiology, 68(7): 3449-3454.
https://dx.doi.org/10.1128/AEM.68.7.3449-3454.2002
Jacquin, L., Gandar, A., Aguirre-Smith, M., Perrault, A., Le Hénaff, M., De Jong, L., Jean, S., 2019. High temperature aggravates the effects of pesticides in goldfish. Ecotoxicology and Environmental Safety, 172: 255-264.
https://dx.doi.org/10.1016/j.ecoenv.2019.01.085
Jalili, C., Roshankhah, S., Salahshoor, M.R., Mohammadi, M.M., 2019. Resveratrol attenuates malathion induced damage in some reproductive parameters by decreasing oxidative stress and lipid peroxidation in male rats. Journal of Family & Reproductive Health, 13(2): 70.
https://dx.doi.org/10.18502/jfrh.v13i2.1912
Jawad, N., Kaur, R., Gouri, S.S., Dumka, V.K., Saini, S.P., 2017. Carbamate pesticide carbaryl induces alterations in antioxidant and oxidative stress related responses of Indian buffalo (Bubalus bubalis) after sub-chronic exposure. Toxicology International (Formerly Indian Journal of Toxicology), 198-202.
https://dx.doi.org/10.22506/ti/2017/v24/i2/162425
Jayabarath, J., Musfira, S.A., Giridhar, R., Arulmurugan, R., 2010. Biodegradation of carbofuran pesticide by saline soil actinomycetes. International Journal of Biotechnology & Biochemistry, 6(2): 187-193.
Kabra, A.N., Ji, M.K.; Choi, J., Kim, J.R., Govindwar, S.P., Jeon, B.H., 2014. Toxicity of Atrazine and Its Bioaccumulation and Biodegradation in A Green Microalga, Chlamydomonas Mexicana. Environ. Sci. Pollutr. 21: 12270–12278.
https://doi.org/10.1007/s11356-014-3157-4
Kafilzadeh, F., Ebrahimnezhad, M., Tahery, Y., 2015. Isolation and identification of endosulfan-degrading bacteria and evaluation of their bioremediation in Kor River, Iran. Osong public health and research perspectives, 6(1): 39-46.
https://dx.doi.org/10.1016/j.phrp.2014.12.003
Kankam, F., 2021. Causes and management of pesticides contamination in agriculture: A review. Ghana Journal of Science, Technology and Development, 7(2): 103-118.
https://dx.doi.org/10.47881/265.967x
Karbelkar, A.A., Reynolds, E.E., Ahlmark, R., Furst, A.L., 2021. A microbial electrochemical technology to detect and degrade organophosphate pesticides. ACS Central Science, 7(10): 1718-1727.
https://dx.doi.org/10.1021/acscentsci.1c00931
Kim, K.H., Kabir, E., Jahan, S.A., 2017. Exposure to pesticides and the associated human health effects. Science of the total environment, 575: 525-535.
https://dx.doi.org/10.1016/j.scitotenv.2016.09.009
Kulkarni, A.G. and Kaliwal, B.B., 2009. Methomyl induced effects on free and immobilized Escherichia coli. Int J Biotechnol Res (IJBR), 2(2): 97-101.
Kulkarni, A.G. and Kaliwal, B.B., 2011. Effect of methomyl on protease activity in free and immobilized Escherichia coli. International Journal of Microbiology Research, 3(2): 74.
https://dx.doi.org/10.9735/0975-5276.3.2.74-78
Kulkarni, A.G. and Kaliwal, B.B., 2018. Bioremediation of methomyl by Escherichia coli. Toxicity and Biodegradation Testing, 75-86.
https://dx.doi.org/10.1007/978-1-4939-7425-2_4
Liu, C., Liu, Z., Fang, Y., Du, Z., Yan, Z., Yuan, X., Zhang, Z., 2022. Exposure to the environmentally toxic pesticide maneb induces Parkinson's disease-like neurotoxicity in mice: A combined proteomic and metabolomic analysis. Chemosphere, 308: 136344.
https://dx.doi.org/10.1016/j.chemosphere.2022.136344
Liu, Y., Wang, X., Nong, S., Bai, Z., Han, N., Wu, Q., Ding, J., 2022. Display of a novel carboxylesterase CarCby on Escherichia coli cell surface for carbaryl pesticide bioremediation. Microbial Cell Factories, 21(1): 97.
https://doi.org/10.1186/s12934-022-01821-5
Lozowicka, B., Jankowska, M., Hrynko, I., Kaczynski, P., 2016. Removal of 16 pesticide residues from strawberries by washing with tap and ozone water, ultrasonic cleaning and boiling. Environmental monitoring and assessment, 188: 1-19.
https://dx.doi.org/10.1007/s10661-015-4850-6
Lu, Y., Song, S., Wang, R., Liu, Z., Meng, J., Sweetman, A. J., Wang, T., 2015. Impacts of soil and water pollution on food safety and health risks in China. Environment international, 77: 5-15.
https://dx.doi.org/10.1016/j.envint.2014.12.010
Luo, C., Huang, Y., Huang, D., Liu, M., Xiong, W., Guo, Q., Yang, T., 2018. Migration Transformation Characteristics of Niclosamide in a Soil–Plant System. ACS Omega, 3: 2312–2321.
https://dx.doi.org/10.1021/acsomega.8b00071
Madani, N.A. and Carpenter, D.O., 2022. Effects of glyphosate and glyphosate-based herbicides like Roundup™ on the mammalian nervous system: A review. Environmental Research, 214: 113933.
https://dx.doi.org/10.1016/j.envres.2022.113933
Mali, H., Shah, C., Raghunandan, B.H., Prajapati, A.S., Patel, D.H., Trivedi, U., Subramanian, R.B., 2023. Organophosphate pesticides an emerging environmental contaminant: Pollution, toxicity, bioremediation progress, and remaining challenges. Journal of Environmental Sciences, 127: 234-250.
https://dx.doi.org/10.1016/j.jes.2022.04.023
Marie, L., Sylvain, P., Benoit, G., Maurice, M., Gwenaël, I., 2017. Degradation and transport of the chiral herbicide S-metolachlor at the catchment scale: combining observation scales and analytical approaches. Environmental Science & Technology, 51(22): 13231-13240.
https://dx.doi.org/10.1021/acs.est.7b02297
McGlynn, K.A., Quraishi, S.M., Graubard, B.I., Weber, J.P., Rubertone, M.V., Erickson, R.L., 2008. Persistent organochlorine pesticides and risk of testicular germ cell tumors. Journal of the National Cancer Institute, 100(9): 663-671.
https://dx.doi.org/10.1093/jnci/djn101
Merigó, J. M., Mas-Tur, A., Roig-Tierno, N., Ribeiro-Soriano, D., 2015. A bibliometric overview of the Journal of Business Research between 1973 and 2014. Journal of Business Research, 68(12): 2645-2653.
https://dx.doi.org/10.1016/j.jbusres.2015.04.006
Mishra, S., Zhang, W., Lin, Z., Pang, S., Huang, Y., Bhatt, P., Chen, S., 2020. Carbofuran toxicity and its microbial degradation in contaminated environments. Chemosphere, 259: 127419.
https://doi.org/10.1016/j.chemosphere.2020.127419
Mojiri, A., Zhou, J.L., Robinson, B., Ohashi, A., Ozaki, N., Kindaichi, T., Vakili, M., 2020. Pesticides in aquatic environments and their removal by adsorption methods. Chemosphere, 253: 126646.
https://dx.doi.org/10.1016/j.chemosphere.2020.126646
Molina, E.M., Kavazis, A.N., Mendonça, M.T., Akingbemi, B.T., 2022. Effects of different DDE exposure paradigms on testicular steroid hormone secretion and hepatic oxidative stress in male Long-Evans rats. General and Comparative Endocrinology, 317: 113963.
https://dx.doi.org/10.1016/j.ygcen.2021.113963
Murthy, K.S., Kiran, B.R., Venkateshwarlu, M., 2013. A review on toxicity of pesticides in Fish. International Journal of Open Scientific Research, 1(1): 15-36.
Murugesan, A.G., Jeyasanthi, T., Maheswari, S., 2010. Isolation and characterization of cypermethrin utilizing bacteria from Brinjal cultivated soil. African Journal of Microbiology Research, 4(1): 010-013.
Pakala, S.B., Gorla, P., Pinjari, A.B., Krovidi, R.K., Baru, R., Yanamandra, M., Siddavattam, D., 2007. Biodegradation of methyl parathion and p-nitrophenol: evidence for the presence of ap-nitrophenol 2-hydroxylase in a Gram-negative Serratia sp. strain DS001. Applied microbiology and biotechnology, 73: 1452-1462.
https://doi.org/10.1007/s00253-006-0595-z
Park, S., Lee, J.Y., Park, H., Song, G., Lim, W., 2020. Bifenthrin induces developmental immunotoxicity and vascular malformation during zebrafish embryogenesis. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 228: 108671.
https://dx.doi.org/10.1016/j.cbpc.2019.108671
Peng, R.H., Xiong, A.S., Yao, Q.H., 2006. A direct and efficient PAGE-mediated overlap extension PCR method for gene multiple-site mutagenesis. Applied microbiology and biotechnology, 73: 234-240.
https://dx.doi.org/10.1007/s00253-006-0583-3
Pérez-Lucas, G., Vela, N., El Aatik, A., Navarro, S., 2019. Environmental risk of groundwater pollution by pesticide leaching through the soil profile. Pesticides-use and misuse and their impact in the environment, 17: 1-28.
https://dx.doi.org/10.5772/intechopen.82418
Pérez-Parada, A., Goyenola, G., de Mello, F.T., Heinzen, H., 2018. Recent advances and open questions around pesticide dynamics and effects on freshwater fishes. Current Opinion in Environmental Science & Health, 4: 38-44.
https://dx.doi.org/10.1016/j.coesh.2018.08.004
Pitzer, E.M., Williams, M.T., Vorhees, C.V., 2021. Effects of pyrethroids on brain development and behavior: Deltamethrin. Neurotoxicology and teratology, 87: 106983.
https://dx.doi.org/10.1016/j.ntt.2021.106983
Qian, J., Li, J., Fang, D., Yu, Y., Zhi, J., 2014. A disposable biofilm-modified amperometric biosensor for the sensitive determination of pesticide biotoxicity in water. RSC Advances, 4(98): 55473-55482.
https://dx.doi.org/10.1039/c4ra08468c
Ravula, A.R. and Yenugu, S., 2021. Pyrethroid based pesticides–chemical and biological aspects. Critical Reviews in Toxicology, 51(2): 117-140.
https://dx.doi.org/10.1080/10408444.2021.1879007
Richins, R.D., Mulchandani, A., Chen, W., 2000. Expression, immobilization, and enzymatic characterization of cellulose‐binding domain‐organophosphorus hydrolase fusion enzymes. Biotechnology and bioengineering, 69(6): 591-596.
https://dx.doi.org/10.1002/1097-0290(20000920)69:6%3C591::AID-BIT2%3E3.0.CO;2-X
Ruomeng, B., Meihao, O., Siru, Z., Shichen, G., Yixian, Z., Junhong, C., Baishan, F., 2023. Degradation strategies of pesticide residue: From chemicals to synthetic biology. Synthetic and Systems Biotechnology, 8(2): 302-313.
https://dx.doi.org/10.1016/j.synbio.2023.03.005
Saari, S., Näreaho, A., Nikander, S., 2019. Chapter 5-Nematoda (roundworms). Canine Parasites and Parasitic Diseases, 83-149.
https://doi.org/10.1016/B978-0-12-814112-0.00005-2
Sander, T., Farke, N., Diehl, C., Kuntz, M., Glatter, T., Link, H., 2019. Allosteric feedback inhibition enables robust amino acid biosynthesis in E. coli by enforcing enzyme overabundance. Cell systems, 8(1): 66-75.
https://dx.doi.org/10.1016/j.cels.2018.12.005
Satapute, P. and Kaliwal, B., 2016. Biodegradation of propiconazole by newly isolated Burkholderia sp. strain BBK_9. 3 Biotech, 6(1): 110.
https://dx.doi.org/10.1007/s13205-016-0429-3
Schmidt, R.J., Kogan, V., Shelton, J.F., Delwiche, L., Hansen, R.L., Ozonoff, S., Volk, H.E., 2017. Combined prenatal pesticide exposure and folic acid intake in relation to autism spectrum disorder. Environmental health perspectives, 125(9): 097007.
https://dx.doi.org/10.1289/EHP604
Selmi, S., Rtibi, K., Grami, D., Sebai, H., Marzouki, L., 2018. Malathion, an organophosphate insecticide, provokes metabolic, histopathologic and molecular disorders in liver and kidney in prepubertal male mice. Toxicology reports, 5: 189-195.
https://dx.doi.org/10.1016/j.toxrep.2017.12.021
Somara, S. and Siddavattam, D., 1995. Plasmid mediated organophosphate pesticide degradation by Flavobacterium balustinum. Biochemistry and molecular biology international, 36(3): 627-631.
Srivastava, A.K. and Singh, D., 2020. Assessment of malathion toxicity on cytophysiological activity, DNA damage and antioxidant enzymes in root of Allium cepa model. Scientific reports, 10(1): 886.
https://dx.doi.org/10.1038/s41598-020-57840-y
Su, W., Hao, H., Wu, R., Xu, H., Xue, F., Lu, C., 2017. Degradation of mesotrione affected by environmental conditions. Bulletin of environmental contamination and toxicology, 98: 212-217.
https://dx.doi.org/10.1007/s00128-016-1970-9
Sujetovienė, G., Gasauskaitė, K., Žaltauskaitė, J., 2019. Toxicity of a phenoxy herbicide on the lichen Ramalina fraxinea. Toxicological & Environmental Chemistry, 101(9-10): 497-507.
https://dx.doi.org/10.1080/02772248.2020.1747466
Sule, R.O., Condon, L., Gomes, A.V., 2022. A common feature of pesticides: oxidative stress—the role of oxidative stress in pesticide-induced toxicity. Oxidative medicine and cellular longevity.
https://dx.doi.org/10.1155/2022/5563759
Sun, S., Sidhu, V., Rong, Y., Zheng, Y., 2018. Pesticide pollution in agricultural soils and sustainable remediation methods: a review. Current Pollution Reports, 4: 240-250.
https://dx.doi.org/10.1007/s40726-018-0092-x
Syafrudin, M., Kristanti, R.A., Yuniarto, A., Hadibarata, T., Rhee, J., Al-Onazi, W.A., Al-Mohaimeed, A.M., 2021. Pesticides in drinking water—a review. International journal of environmental research and public health, 18(2): 468.
https://dx.doi.org/10.3390/ijerph18020468
Tan, H., Wu, Q., Hao, R., Wang, C., Zhai, J., Li, Q., Wu, C., 2023. Occurrence, distribution, and driving factors of current-use pesticides in commonly cultivated crops and their potential risks to non-target organisms: A case study in Hainan, China. Science of the Total Environment, 854: 158640.
https://dx.doi.org/10.1016/j.scitotenv.2022.158640
Tudi, M., Daniel Ruan, H., Wang, L., Lyu, J., Sadler, R., Connell, D., Phung, D.T., 2021. Agriculture development, pesticide application and its impact on the environment. International journal of environmental research and public health, 18(3): 1112.
https://dx.doi.org/10.3390/ijerph18031112
Uchendu, C., Ambali, S.F., Ayo, J.O., Esievo, K.A.N., 2018. Chronic co-exposure to chlorpyrifos and deltamethrin pesticides induces alterations in serum lipids and oxidative stress in Wistar rats: mitigating role of alpha-lipoic acid. Environmental Science and Pollution Research, 25: 19605-19611.
https://dx.doi.org/10.1007/s11356-018-2185-x
Ullah, S., Li, Z., Hasan, Z., Khan, S.U., Fahad, S., 2018. Malathion induced oxidative stress leads to histopathological and biochemical toxicity in the liver of rohu (Labeo rohita, Hamilton) at acute concentration. Ecotoxicology and Environmental Safety, 161: 270-280.
https://dx.doi.org/10.1016/j.ecoenv.2018.06.002
Whithaus, S.M. and Blecker, L.A., 2021. Pesticide Safety: A Study Manual for Private Applicators. UCANR Publications.
Xiong, Y., Wang, C., Dong, M., Li, M., Hu, C., Xu, X., 2023. Chlorphoxim induces neurotoxicity in zebrafish embryo through activation of oxidative stress. Environmental Toxicology, 38(3): 566-578.
https://dx.doi.org/10.1002/tox.23702
Xu, J., Wang, B., Wang, M.Q., Gao, J.J., Li, Z.J., Tian, Y.S., Yao, Q.H., 2022. Metabolic engineering of Escherichia coli for methyl parathion degradation. Frontiers in Microbiology, 13: 679126.
https://dx.doi.org/10.3389/fmicb.2022.679126
Xu, J., Wang, B., Zhang, W.H., Zhang, F.J., Deng, Y.D., Wang, Y., Yao, Q.H., 2021. Biodegradation of p-nitrophenol by engineered strain. AMB Express, 11: 1-8.
https://dx.doi.org/10.1186/s13568-021-01284-8
Yadav, I.C. and Devi, N.L., 2017. Pesticides classification and its impact on human and environment. Environmental science and engineering, 6: 140-158.
Yousaf, S., Khan, S., Aslam, M.T., 2013. Effect of pesticides on the soil microbial activity. Pakistan Journal of Zoology, 45(4).
Zhang, W., 2018. Global pesticide use: Profile, trend, cost/benefit and more. Proceedings of the International Academy of Ecology and Environmental Sciences, 8(1): 1.
Zhongli, C., Shunpeng, L., Guoping, F.U., 2001. Isolation of methyl parathion-degrading strain M6 and cloning of the methyl parathion hydrolase gene. Applied and environmental microbiology, 67(10): 4922-4925.
https://dx.doi.org/10.1128/AEM.67.10.4922-4925.2001
DOI: https://doi.org/10.26789/AEB.2024.02.003
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 R Anju Ishwarya, M KAMARAJ, J Aravind

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.