Bio-detoxification of mycotoxin-contaminated feedstuffs: Using lactic acid bacteria and yeast
Abstract
Keywords
Full Text:
References
Abbas, H.K., 2005. Aflatoxin and Food Safety. CRC Press. ISBN: 978-0-8247-2303-3.
Abraham, N., Chan, E.T.S., Zhou, T., Seah, S.Y.K., 2022. Microbial detoxification of mycotoxins in food. Frontiers in Microbiology, 13: 957148.
https://doi.org/10.3389/fmicb.2022.957148
Abrunhosa, L., Inês, A., Rodrigues, A.I., Guimarães, A., Pereira, V.L., Parpot, P., Venâncio, A., 2014. Biodegradation of ochratoxin A by Pediococcus parvulus isolated from Douro wines. International Journal of Food Microbiology, 188: 45-52.
https://doi.org/10.1016/j.ijfoodmicro.2014.07.019
Abrunhosa, L., Paterson, R.R.M. and Venâncio, A., 2010. Biodegradation of ochratoxin A for food and feed decontamination. Toxins, 2: 1078-1099.
https://doi.org/10.3390/toxins2051078
Adunphatcharaphon, S., Petchkongkaew, A. and Visessanguan, W., 2021. In vitro mechanism assessment of zearalenone removal by plant-derived Lactobacillus plantarum BCC 47723. Toxins, 13: 286. https://doi.org/10.3390/toxins13040286
Ansari, F. and Rezaei, K., 2022. Biological detoxification of mycotoxins by binding them with certain microorganisms: A review. Microbiology, Metabolites and Biotechnology, 5(1): 56-69.
Armando, M., Galvagno, M., Dogi, C., Cerrutti, P., Dalcero, A., Cavaglieri, L., 2013. Statistical optimization of culture conditions for biomass production of probiotic gut-borne Saccharomyces cerevisiae strain able to reduce fumonisin B1. Journal of Applied Microbiology, 114: 1338-1346. https://doi.org/10.1111/jam.12144
Ashiq, S., 2014. Natural occurrence of mycotoxins in food and feed: Pakistan perspective. Comprehensive Reviews in Food Science and Food Safety, 14(2): 159-175. https://doi.org/10.1111/1541-4337.12122
Azeem, N., Nawaz, M., Anjum, A.A., Saeed, S., Sana, S., Mustafa, A., Yousuf, M.R., 2019. Activity and anti-aflatoxigenic effect of indigenously characterized probiotic lactobacilli against Aspergillus flavus—A common poultry feed contaminant. Animals, 9: 166-175. https://doi.org/10.3390/ani9040166
Bagherzadeh Kasmani, F., Karimi Torshizi, M.A., Allameh, A., Shariatmadari, F., 2012. A novel aflatoxin-binding Bacillus probiotic: Performance, serum biochemistry, and immunological parameters in Japanese quail. Poultry Science, 91: 1846-1853.
http://dx.doi.org/10.3382/ps.2011-01830
Ben Hassouna, K., Ben Salah-Abbès, J., Chaieb, K., Abbès, S., 2022. Mycotoxins occurrence in milk and cereals in North African countries - a review. Critical Reviews in Toxicology, 52(8): 619-635. https://doi.org/10.1080/10408444.2022.2157703
Bevilacqua, A., Petruzzi, L., Corbo, M.R., Baiano, A., Garofalo, C., Sinigaglia, M., 2014. Ochratoxin A released back into the medium by Saccharomyces cerevisiae as a function of the strain, washing medium and fermentative conditions. Journal of Science of Food and Agriculture, 94: 3291-3295. http://dx.doi.org/10.1002/jsfa.6683
Bovo, F., Franco, L.T., Rosim, R., Favaro, E., Trindade, C.S., Fernandes De Oliveira, C.A., 2014. The ability of Lactobacillus rhamnosus in solution, spray-dried or lyophilized to bind aflatoxin B1. Journal of Food Research, 3: 35-41.
https://doi.org/10.5539/jfr.v3n2p35
Calvet, R.M., Nóbrega, M.M.G.P., Costa, A.P.R., Pereyra, C.M., Monte, A.M., Muratori, M.C.S., 2020. In Vitro anti-mycotoxin activity of probiotic (Bacillus spp) and microalgae (Chaetoceros gracilis) for aflatoxin B1 and ochratoxin A used to feed Litopenaeus vannamei. Research, Society and Development, 9(11): e5499119998.
https://doi.org/10.33448/rsd-v9i11.9998
Chaytor, A.C., Hansen, J.A., van Heugten, E., See, M.T., Kim, S.W., 2011. Occurrence and decontamination of mycotoxins in swine feed. Asian-Australasian Journal of Animal Sciences, 24: 723-738.
https://doi.org/10.5713/ajas.2011.10358
Chen, S.W., Wang, H.T., Shih, W.Y., Ciou, Y.A., Chang, Y.Y., Ananda, L., Wang, S.Y., Hsu, J.T., 2019. Application of zearalenone (ZEN)-detoxifying Bacillus in animal feed decontamination through fermentation. Toxins, 11: 330-341.
https://doi.org/10.3390/toxins11060330
Chlebicz, A. and Śliżewska, K., 2020. In vitro detoxification of Aflatoxin B1, deoxynivalenol, fumonisins, T-2 toxin and zearalenone by probiotic bacteria from genus Lactobacillus and Saccharomyces cerevisiae yeast. Probiotics and Antimicrobial Proteins, 12: 289-301.
https://doi.org/10.1007/s12602-018-9512-x
Clark, H.A. and Snedeker, S.M., 2006. Ochratoxin A: its cancer risk and potential for exposure. Journal of Toxicology and Environmental Health Part B: Critical Reviews, 9(3): 265-296.
https://doi.org/10.1080/15287390500195570
Conte, G., Fontanelli, M., Galli, F., Cotrozzi, L., Pagni, L., Pellegrini, E., 2020. Mycotoxins in feed and food and the role of ozone in their detoxification and degradation: an update. Toxins, 12: 486. https://doi.org/10.3390/toxins12080486
Coppock, R.W., Christian, R.G. and Jacobsen, B.J., 2018. Aflatoxins in veterinary toxicology basic and clinical principles. In: Gupta RC, editor. Academic Press, Cambridge, United States, p. 983-994.
Dawlal, P., Brabet, C., Thantsha, M.S., Buys, E.M., 2019. Visualisation and quantification of fumonisins bound by lactic acid bacteria isolates from traditional African maize-based fermented cereals, ogi and mahewu. Food Additives and Contaminants Part A, 36(2): 296-307. https://doi.org/10.1080/19440049.2018.1562234
Deepthi, B.V., Poornachandra Rao, K., Chennapa, G., Naik, M.K., Chandrashekara, K.T., Sreenivasa, M.Y., 2016. Antifungal attributes of Lactobacillus plantarum MYS6 against fumonisin producing Fusarium proliferatum associated with poultry feeds. PLoS One, 11(6): e0155122. https://doi.org/10.1371/journal.pone.0155122
El-Nezami, H.S., Chrevatidis, A., Auriola, S., Salminen, S., Mykkanen, H., 2002. Removal of common Fusarium toxins in vitro by strains of Lactobacillus and Propionibacterium. Food Additives and Contaminants, 19: 680-686.
Elsanhoty, R.M., Al-Turki, I.A. and Ramadan, M.F., 2016. Application of lactic acid bacteria in removing heavy metals and aflatoxin B1 from contaminated water. Water Science Technology, 74(3): 625-638. https://doi.org/10.2166/wst.2016.255
Fernandez Juri, M.G., Dalcero, A.M. and Magnoli, C.E., 2014. In vitro aflatoxin B1 binding capacity by two Enterococcus faecium strains isolated from healthy dog faeces. Journal of Applied Microbiology, 118: 574-582
http://dx.doi.org/10.1111/jam.12726
Food and Drug Administration (FDA), 2016. Bad Bug Book: Foodborne pathogenic microorganisms and natural toxins. 2nd ed. Accessed Nov. 1.
Fratamico, P.M., Bhunia, A.K. and Smith, J.L., 2008. Foodborne Pathogens: Microbiology and Molecular Biology. Norofolk, UK: Horizon Scientific Press. ISBN 978-1-898486-52-7.
Fu, G., Ma, J., Wang, L., Yang, X., Liu, J.R., Zhao, X., 2016. Effect of degradation of zearalenone-contaminated feed by Bacillus licheniformis CK1 on postweaning female piglets. Toxins, 8: 300. https://doi.org/10.3390/toxins8100300
Fuchs, E., Binder, E.M., Heidler, D., Krska, R., 2002. Structural characterization of metabolites after the microbial degradation of type a trichothecenes by the bacterial strain BBSH 797. Food Additives and Contaminants, 19: 379-386.
Galarza-Seeber, R., Latorre, J.D., Hernandez-Velasco, X., Wolfenden, A.D., Bielke, L.R., Menconi, A., Hargis, B.M., Tellez, G., 2015. Isolation, screening and identification of Bacillus spp. as direct-fed microbial candidates for aflatoxin B 1 biodegradation. Asian Pacific Journal of Tropical Biomedicine, 5(9): 702-706.
https://doi.org/10.1016/j.apjtb.2015.07.014
Gallo, A., Fancello, F., Ghilardelli, F., Zara, S., Spanghero, M., 2022. Effects of several commercial or pure lactic acid bacteria inoculants on fermentation and mycotoxin levels in high-moisture corn silage. Animal Feed Science and Technology, 286: 115256.
https://doi.org/10.1016/j.anifeedsci.2022.115256
González Pereyra, M.L., Martínez, M.P. and Cavaglieri, L.R., 2019. Presence of aiiA homologue genes encoding for N-acyl homoserine lactone-degrading enzyme in aflatoxin B 1-decontaminating bacillus strains with potential use as feed additives. Food and Chemical Toxicology, 124: 316-323. https://doi.org/10.1016/j.fct.2018.12.016
Gruber-Dorninger, C., Jenkins, T. and Schatzmayr, G., 2019. Global mycotoxin occurrence in feed: A ten-year survey. Toxins, 11: 375.
https://doi.org/10.3390/toxins11070375
Guan, Y., Chen, J., Nepovimova, E., Long, M., Wu, W., Kuca, K., 2021. Aflatoxin detoxification using microorganisms and enzymes. Toxins, 13: 46-63.
https://doi.org/10.3390/toxins13010046
Guo, C., Guo, M., Zhang, S., Qin, D., Yang, Y., Li, M., 2018. Assessment of patulin adsorption efficacy from aqueous solution by water-insoluble corn flour. Journal of Food Safety, 38(1): e12397. https://doi.org/10.1111/jfs.12397
Guo, Y., Qin, X., Tang, Y., Ma, Q., Zhang, J., Zhao, L., 2020. CotA laccase, a novel aflatoxin oxidase from bacillus licheniformis, transforms aflatoxin B1 to aflatoxin Q1 and epi-aflatoxin Q1. Food Chemistry, 325: 126877.
https://doi.org/10.1016/j.foodchem.2020.126877
Halttunen, T., Collado, M.C., El-Nezami, H., Meriluoto, J., Salminen, S., 2007. Combining strains of lactic acid bacteria may reduce their toxin and heavy metal removal efficiency from aqueous. Letters in Applied Microbiology, 46(2): 160-165.
https://doi.org/10.1111/j.1472-765X.2007.02276.x
Hamidi, A., Mirnejad, R., Yahaghi, E., Behnod, V., Mirhosseini, A., Amani, S., 2013. The aflatoxin B1 isolating potential of two lactic acid bacteria. Asian Pacific Journal of Tropical Biomedicine, 3: 732-736.
http://dx.doi.org/10.1016/S2221-1691(13)60147-1
Haque, M.A., Wang, Y., Shen, Z., Li, X., Saleemi, M.K., He, C., 2020. Mycotoxin contamination and control strategy in human, domestic animal and poultry: A review. Microbial Pathogenesis, 142: 104095.
https://doi.org/10.1016/j.micpath.2020.104095
Hsu, T.C., Yi, P.J., Lee, T.Y., Liu, J.R., 2018. Probiotic characteristics and zearalenone-removal ability of a Bacillus licheniformis strain. PLoS One, 13(4): e0194866.
https://doi.org/10.1371/journal.pone.0194866
Hudler, G.W., 1998. Magical Mushrooms, Mischievous Molds: The Remarkable Story of the Fungus Kingdom and Its Impact on Human Affairs. Princeton University Press. ISBN 978-0-691-07016-2.
Iqbal, M., Abbas, M., Adil, M., Nazir, A., Ahmad, I., 2019. Aflatoxins biosynthesis, toxicity and intervention strategies: A review. Chemistry International, 5(3): 168-191. https://doi.org/10.5281/zenodo.1570747
Islam, R., Zhou, T., Young, J.C., Goodwin, P.H., Pauls, K.P., 2012. Aerobic and anaerobic de-epoxydation of mycotoxin deoxynivalenol by bacteria originating from agricultural soil. World Journal of Microbiology and Biotechnology, 28: 7-13.
https://doi.org/10.1007/s11274-011-0785-4
Jamal, M.T., Abdulrahman, I.A., Al Harbi, M., Chithambaran, S., 2019. Probiotics as alternative control measures in shrimp aquaculture: A review. Journal of Applied Biology and Biotechnology, 7(03): 69-77.
https://doi.org/10.7324/JABB.2019.70313
Jia, R., Cao, L.R., Liu, W.B., Shen, Z.Y., 2021. Detoxification of deoxynivalenol by Bacillus subtilis ASAG 216 and characterization the degradation process. European Food Research and Technology, 247: 67-76.
https://doi.org/10.1007/s00217-020-03607-8
Ju, J., Tinyiro, S.E., Yao, W., Yu, H., Guo, Y., Qian, H., Xie, Y.F., 2019. The ability of Bacillus subtilis and Bacillus natto to degrade zearalenone and its application in food. Journal of Food Processing and Preservation, 43(10): e14122.
https://doi.org/10.1111/jfpp.14122
Juráček, M., Felšöciová, S., Bíro, D., Šimko, M., Gálik, B., Rolinec, M., Hanušovský, O., Bujko, J., Kalúzová, M., Kačániová, M., 2022. The effect of lactic acid bacteria addition on microbiota and occurrence of mycotoxins in rye silages. Journal of Central European Agriculture, 23(2): 342-350. https://doi.org/10.5513/JCEA01/23.2.3540
Kapetanakou, A.E., Kollias, J.N., Drosinos, E.H., Skandamis, P.N., 2012. Inhibition of A. Carbonarius growth and reduction of ochratoxin A by bacteria and yeast composites of technological importance in culture media and beverages. International Journal of Food Microbiology, 152: 91-99. https://doi.org/10.1016/j.ijfoodmicro.2011.09.010
Khatibi, P.A., Newmister, S.A., Rayment, I., McCormick, S.P., Alexander, N.J., Schmale, D.G., 2011. Bioprospecting for trichothecene 3-o-acetyltransferases in the fungal genus fusarium yields functional enzymes with different abilities to modify the mycotoxin deoxynivalenol. Applied and Environmental Microbiology, 77: 1162-1170.
https://doi.org/10.1128/AEM.01738-10
Khosravi Darani, K., Zoghi, A., Jazayeri, S., Cruz, A.G., 2020. Decontamination of Aflatoxins with a focus on Aflatoxin B1 by probiotic bacteria and yeasts: a review. Journal of Microbiology Biotechnology and Food Science, 10: 424-435.
https://doi.org/10.15414/jmbfs.2020.10.3.424-435
Kosicki, R., Blajet-Kosicka, A., Grajewski, J., Twaruzek, M., 2016. Multiannual mycotoxin survey in feed materials and feeding stuffs. Animal Feed Science and Technology, 215: 165-180. https://doi.org/10.1016/j.anifeedsci.2016.03.012
Kowalska, K., Habrowska-Górczy´nska, D.E. and Piastowska-Ciesielska, A.W., 2016. Zearalenone as an endocrine disruptor in humans. Environmental Toxicology and Pharmacology, 48: 141-149. https://doi.org/10.1016/j.etap.2016.10.015
Król, A., Pomastowski, P., Rafińska, K., Railean-Plugaru, V., Walczak, J., Buszewski, B., 2018. Microbiology neutralization of zearalenone using Lactococcus lactis and Bifidobacterium sp. Analytical and Bioanalytical Chemistry, 410: 943-952.
https://doi.org/10.1007/s00216-017-0555-8
Lee, A., Cheng, K.C. and Liu, J.R., 2017. Isolation and characterization of a Bacillus amyloliquefaciens strain with zearalenone removal ability and its probiotic potential. PLoS ONE, 12(8): e0182220. https://doi.org/10.1371/journal.pone.0182220
Lei, Y.P., Zhao, L.H., Ma, Q.G., Zhang, J.Y., Zhou, T., Gao, C.Q., Ji, C., 2014. Degradation of zearalenone in swine feed and feed ingredients by Bacillus subtilis ANSB01. World Mycotoxin Journal, 7(2): 143-151.
https://doi.org/10.3920/wmj2013.1623
Liew, W.P.P. and Mohd-Redzwan, S., 2018. Mycotoxin: its impact on gut health and microbiota. Frontiers in Cellular and Infection Microbiology, 8: 60.
https://doi.org/10.3389/fcimb.2018.00060
Liu, F., Malaphan, W., Xing, F., Yu, B., 2019. Biodetoxification of fungal mycotoxins zearalenone by engineered probiotic bacterium lactobacillus reuteri with surface-displayed lactonohydrolase. Applied Microbiology and Biotechnology, 103: 8813-8824.
https://doi.org/10.1007/s00253-019-10153-1
Liu, A., Zheng, Y., Liu, L., Chen, S., He, L., Ao, X., Yang, Y., Liu, S., 2020. Decontamination of aflatoxins by lactic acid bacteria. Current Microbiology, 77: 3821-3830. https://doi.org/10.1007/s00284-020-02220-y
Liu, M., Zhao, L., Gong, G., Zhang, L., Shi, L., Dai, J., Han, Y., Wu, Y., Khalil, M.M., Sun, L., 2022. Invited review: Remediation strategies for mycotoxin control in feed. Journal of Animal Science and Biotechnology, 13(1): 19.
https://doi.org/10.1186/s40104-021-00661-4
Luz, C., Ferrer, J., Mañes, J., Meca, G., 2018. Toxicity reduction of ochratoxin A by lactic acid bacteria. Food and Chemical Toxicology, 112: 60-66.
https://doi.org/10.1016/j.fct.2017.12.030
Ma, Q.G., Gao, X., Zhou, T., Zhao, L.H., Fan, Y., Li, X.Y., Lei, Y.P., Ji, C., Zhang, J.Y., 2012. Protective effect of Bacillus subtilis ANSB060 on egg quality, biochemical and histopathological changes in layers exposed to aflatoxin B1. Poultry Science, 91: 2852-2857.
https://doi.org/10.3382/ps.2012-02474
Markowiak, P., Śliżewska, K., Nowak, A., Chlebicz, A., Zÿbikowski, A., Pawowski, K., Szeleszczuk, P., 2019. Probiotic microorganisms detoxify ochratoxin A in both a chicken liver cell line and chickens. Journal of Science of Food and Agriculture, 99: 4309-4318.
https://doi.org/10.1002/jsfa.9664
Martinez Tuppia, C., Atanasova-Penichon, V., Chéreau, S., Ferrer, N., Marchegay, G., Savoie, J., Richard-Forget, F., 2017. Yeast and bacteria from ensiled high moisture maize grains as potential mitigation agents of fumonisin B1. Journal of Science of Food and Agriculture, 97: 2443-2452. https://doi.org/10.1002/jsfa.8058
Massoud, R. and Zoghi, A., 2022. Potential probiotic strains with heavy metals and mycotoxins bioremoval capacity for application in foodstuffs. Journal of Applied Microbiology, 133(3): 1288-1307.
https://doi.org/10.1111/jam.15685
Møller, A., Freire, L., Rosim, R.E., Margalho, L.P., Balthazar, C.F., Franco, L.T., Sant’Ana, A.S., Corassin, C.H., Rattray, F.P., Oliveira, C.A.F., 2021. Effect of lactic acid bacteria strains on the growth and aflatoxin production potential of Aspergillus parasiticus, and their ability to bind aflatoxin B1, ochratoxin A, and zearalenone in vitro. Frontiers in Microbiology, 12: 655386. https://doi.org/10.3389/fmicb.2021.655386
Moretti, A.F., Gamba, R.R., Puppo, J., Malo, N., Gómez-Zavaglia, A., Peláez, A.L., Golowczyc, M.A., 2018. Incorporation of Lactobacillus plantarum and zeolites in poultry feed can reduce aflatoxin B1 levels. Journal of Science of Food and Agriculture, 55: 431-436.
https://doi.org/10.1007/s13197-017-2923-y
Motameny, R., Sadeghi, A.A., Dehghan-Banadaky, M., Chamani, M., Abolhassani, M., 2012. Effect of some acid treated bacteria on reduction of impure aflatoxin B1 in ruminant gastrointestinal model. Journal of American Science, 7: 213-217.
Muaz, K., Riaz, M., Oliveira, C.A.F., Akhtar, S., Ali, S.W., Nadeem, H., Park, S., Balasubramanian, B., 2021. Aflatoxin M1 in milk and dairy products: global occurrence and potential decontamination strategies. Toxin Reviews, 1-18.
https://doi.org/10.1080/15569543.2021.1873387
Muhialdin, B.J., Saari, N., Meor Hussin, A.S., 2020. Review on the biological detoxification of mycotoxins using lactic acid bacteria to enhance the sustainability of foods supply. Molecules, 25(11): 2655-2667.
https://doi.org/10.3390/molecules25112655
Nasrollahzadeh, A., Mokhtari, S., Khomeiri, M., Saris, P., 2022. Mycotoxin detoxification of food by lactic acid bacteria. International Journal of Food Contaminants, 9.
https://doi.org/10.1186/s40550-021-00087-w
Nazareth, T.D.M., Luz, C., Torrijos, R., Quiles, J.M., Luciano, F.B., Mañes, J., Meca, G., 2020. Potential application of lactic acid bacteria to reduce aflatoxin B1 and fumonisin B1 occurrence on corn kernels and corn ears. Toxins, 12: 21
. https://doi.org/10.3390/toxins12010021
Niderkorn, V., Boudra, H. and Morgavi, D.P., 2006. Binding of Fusarium mycotoxins by fermentative bacteria in vitro. Appl. Environ. Microbiol. 101, 849-856.
Niderkorn, V., Boudra, H., Morgavi, D.P., 2008. Stability of the bacteriabound zearalenone complex in ruminal fluid and in simulated gastrointestinal environment in vitro. World Mycotoxin Journal, 1: 463-467.
https://doi.org/10.3920/WMJ2007.1010
O'Brien, E. and Dietrich, D.R., 2005. Ochratoxin A: the continuing enigma. Critical Reviews in Toxicology, 35(1): 33-60.
https://doi.org/10.1080/10408440590905948
Oleksy-Sobczak, M., Klewicka, E., Piekarska-Radzik, L., 2020. Exopolysaccharides production by Lactobacillus rhamnosus strains - optimization of synthesis and extraction conditions. LWT-Food Science and Technology, 122: 109055.
https://doi.org/10.1016/j.lwt.2020.109055
Olinda, R.G., Lima, J.M., de Lucena, R.B., do Vale, A.M., Batista, J.S., de Barros, C.S.L., Riet-Correa, F., Dantas, A.F.M., 2016. Acute aflatoxicosis in swines in Northeastern Brazil. Acta Science Veterenian, 44: 124-129.
Peillod, C., Laborde, M., Travel, A., Mika, A., Bailly, J.D., Cleva, D., 2021. Toxic effects of fumonisins, deoxynivalenol and zearalenone alone and in combination in ducks fed the maximum eutolerated level. Toxins, 13(2): 152.
https://doi.org/10.3390/toxins13020152
Perczak, A., Goliñski, P., Bryla, M., Waœkiewicz, A., 2018. The efficiency of lactic acid bacteria against pathogenic fungi and mycotoxins. Archives of Industrial Hygiene and Toxicology, 69: 32-45. https://doi.org/10.2478/aiht-2018-69-3051
Petruzzi, L., Corbo, M.R., Sinigaglia, M., Bevilacqua, A., 2016. Ochratoxin a removal by yeasts after exposure to simulated human gastrointestinal conditions. Journal of Food Science, 81: 2756-2760. https://doi.org/10.1111/1750-3841.13518
Pinton, P. and Oswald, I.P., 2014. Effect of deoxynivalenol and other Type B trichothecenes on the intestine: a review. Toxins, 6: 1615-1643.
https://doi.org/10.3390/toxins6051615
Piotrowska, M., 2014. The adsorption of ochratoxin A by Lactobacillus species. Toxins, 6: 2826-2839. https://doi.org/10.3390/toxins6092826.
Pizzolitto, R.P., Salvano, M.A. and Dalcero, A.M., 2012. Analysis of fumonisin B1 removal by microorganisms in co-occurrence with aflatoxin B1 and the nature of the binding process. International Journal of Food Microbiology, 156: 214-221. https://doi.org/10.1016/j.ijfoodmicro.2012.03.024
Prossnitz, E.R. and Barton, M., 2014. Estrogen biology: new insights into GPER function and clinical opportunities. Molecular and Cellular Endocrinology, 389(1-2): 71-83.
https://doi.org/10.1016/j.mce.2014.02.002
Ragoubi, C., Quintieri, L., Greco, D., Mehrez, A., Maatouk, I., D’Ascanio, V., Landoulsi, A., Avantaggiato, G., 2020. Mycotoxin removal ability of Lactobacillus acidophilus cip 76.13 and L. brevis cip 102806t isolated from humans. Journal of Clinical Gastroenterology, 54: S29.
Ragoubi, C., Quintieri, L., Greco, D., Mehrez, A., Maatouk, I., D’Ascanio, V., Landoulsi, A., Avantaggiato, G., 2021. Mycotoxin removal by Lactobacillus spp. and their application in animal liquid feed. Toxins, 13: 185-200.
https://doi.org/10.3390/toxins13030185
Rayes, A.A.H., 2013. Removal of aflatoxin B1 from experimentally contaminated whole milk using a pool of probiotic strains of lactic acid bacteria and baker’s yeast Saccharomyces cerevisiae. New York Science Journal, 6: 84-90.
Rodrigues, I. and Naehrer, K., 2012. A three-year survey on the worldwide occurrence of mycotoxins in feedstuffs and feed. Toxins, 4: 663-675.
https://doi.org/10.3390/toxins4090663
Rogowska, A., Pomastowski, P., Walczak, J., Railean-Plugaru, V., Rudnicka, J., Buszewski, B., 2019. Investigation of zearalenone adsorption and biotransformation by microorganisms cultured under cellular stress conditions. Toxins, 11: 463.
https://doi.org/10.3390/toxins11080463
Ropejko, K. and Twarużek, M., 2021. Zearalenone and its metabolites-General overview, occurrence, and toxicity. Toxins, 13(1): 35.
https://doi.org/10.3390/toxins13010035
Sadiq, F.A., Yan, B., Tian, F., Zhao, J., Zhang, H., Chen, W., 2019. Lactic acid bacteria as antifungal and anti-mycotoxigenic agents: A comprehensive review. Comprehensive Reviews in Food Science and Food Safety, 18: 1403-1436.
https://doi.org/10.1111/1541-4337.12481
Sana, S., Anjum, A.A., Yaqub, T., Nasir, M., Ali, M.A., Abbas, M., 2019. Molecular approaches for characterization of aflatoxin producing Aspergillus flavus isolates from poultry feed. Pakistan Veterinarian Journal, 39: 169-174.
https://doi.org/10.29261/pakvetj/2019.031
Sezer, Ç., Güven, A., Oral, N.B., Vatansever, L., 2013. Detoxification of aflatoxin B1 by bacteriocins and bacteriocinogenic lactic acid bacteria. Turkish Journal of Veterinary and Animal Sciences, 37: 594-601.
https://doi.org/10.3906/vet-1301-31
Shu, X., Wang, Y.T., Zhou, Q., Li, M.H., Hu, H., Ma, Y.H., 2018. Biological degradation of aflatoxin B1 by cell-free extracts of bacillus velezensis DY3108 with broad PH stability and excellent thermostability. Toxins, 10(8): 330.
https://doi.org/10.3390/toxins10080330
Śliżewska, K., Nowak, A. and Smulikowska, S., 2016. Probiotic preparation reduces faecal water genotoxicity and cytotoxicity in chickens fed ochratoxin A contaminated feed (in vivo study). Acta Biochimica Polonica, 63(2): 281-286.
https://doi.org/10.18388/abp.2015_1094
Śliżewska, K. and Piotrowska, M., 2014. Reduction of ochratoxin A in chicken feed using probiotic. Annals of Agricultural and Environmental Medicine, 21(4): 676-680. https://doi.org/10.5604/12321966.1129913
Śliżewska, K. and Smulikowska, S., 2011. Detoxification of afiatoxin B1 and change in microflora pattern by probiotic in vitro fermentation of broiler feed. Journal of Animal Feed Science, 20: 300-309. https://doi.org/10.22358/jafs/66187/2011
Streit, E., Schatzmayr, G., Tassis, P., Tzika, E., Marin, D., Taranu, I., Tabacu, C., Nicolau, A., Aprodu, I., Puel, O., Oswald, I.P., 2012. Current situation of mycotoxin contamination and co-occurrence in animal feed-focus on Europe. Toxins, 4(10): 788-809.
https://doi.org/10.3390/toxins4100788
Tan, H., Hu, Y., He, J., Wu, L., Liao, F., Luo, B., He, Y., Zuo, Z., Ren, Z., Zhong, Z., 2014. Zearalenone degradation by two Pseudomonas strains from soil. Mycotoxin Research, 30: 191-196. https://doi.org/10.1007/s12550-014-0199-x
Teodorowicz, M., Van Neerven, J. and Savelkoul, H., 2017. Food processing: the influence of the maillard reaction on immunogenicity and allergenicity of food proteins. Nutrition, 9: 835. https://doi.org/10.3390/nu9080835
Theumer, M.G., Henneb, Y., Khoury, L., Snini, S.P., Tadrist, S., Canlet, C., Audebert, M., 2018. Genotoxicity of aflatoxins and their precursors in human cells. Toxicology Letters, 287: 100-107. https://doi.org/10.1016/j.toxlet.2018.02.007
Tinyiro, S.E., Wokadala, C., Xu, D., Yao, W., 2011. Adsorption and degradation of zearalenone by bacillus strains. Folia Microbiologica, 56: 321-327.
https://doi.org/10.1007/s12223-011-0047-8
Tiziri, B., Durand, N., Bendali, F., Piro-Metayer, I., Zinedine, A., Salah-Abbès, J., Abbes, S., Montet, D., Riba, A., Brabet, C., 2023. In vitro detoxification of aflatoxin B1 and ochratoxin A by lactic acid bacteria isolated from Algerian fermented foods. Biological Control, 179: 105181. https://doi.org/10.1016/j.biocontrol.2023.105181
Topcu, A., Bulat, T., Wishah, R., Boyac, I.H., 2010. Detoxification of aflatoxin B1 and patulin by Enterococcus faecium strains. International Journal of Food Microbiology, 139(3): 202-205. https://doi.org/10.1016/j.ijfoodmicro.2010.03.006
Vila-Donat, P., Marín, S., Sanchis, V., Ramos, A.J., 2018. A review of the mycotoxin adsorbing agents, with an emphasis on their multi-binding capacity, for animal feed decontamination. Food and Chemical Toxicology, 114: 246-259.
https://doi.org/10.1016/j.fct.2018.02.044
Vosough, P.R., Sani, A.M., Mehraban, M., Karazhyan, R., 2014. In vitro effect of Lactobacillus rhamnosus GG on reduction of aflatoxin B1. Nutrition and Food Science, 44: 32-40. https://doi.org/10.1108/NFS-11-2012-0122
Wang, G., Yu, M., Dong, F., Shi, J., Xu, J., 2017. Esterase activity inspired selection and characterization of zearalenone degrading bacteria Bacillus pumilus ES-21. Food Control, 77: 57-64. https://doi.org/10.1016/j.foodcont.2017.01.021
Wang, L., Yue, T., Yuan, Y., Wang, Z., Ye, M., Cai, R., 2015. A new insight into the adsorption mechanism of patulin by the heat-inactive lactic acid bacteria cells. Food Control, 50: 104-110. https://doi.org/10.1016/j.foodcont.2014.08.041
Wang, N., Li, P., Wang, M., Chen, S., Huang, S., Long, M., Yang, S., He, J., 2018b. The protective role of Bacillus velezensis A2 on the biochemical and hepatic toxicity of zearalenone in mice. Toxins, 10: 449. https://doi.org/10.3390/toxins10110449
Wang, N., Wu, W., Pan, J., Long, M., 2019. Detoxification strategies for zearalenone using microorganisms: a review. Microorganisms, 7: 208-222. https://doi.org/10.3390/microorganisms7070208
Wang, W., Sun, J., Liu, C., Xue, Z., 2016. Application of immunostimulants in aquacultur: current knowledge and future perspectives. Aquaculture Research, 1-23.
https://doi.org/10.1111/are.13161
Wang, Y., Zhang, J., Wang, Y., Wang, K., Wei, H., Shen, L., 2018a. Isolation and characterization of the Bacillus cereus BC7 strain, which is capable of zearalenone removal and intestinal flora modulation in mice. Toxicon, 155: 9-20.
https://doi.org/10.1016/j.toxicon.2018.09.005
Watanakij, N., Visessanguan, W. and Petchkongkaew, A., 2020. Aflatoxin B1-degrading activity from Bacillus subtilis BCC 42005 isolated from fermented cereal products. Food Additives and Contaminants Part A: Chemistry, Analysis, Control, Exposure and Risk Assessment, 37: 1579-1589. https://doi.org/10.1080/19440049.2020.1778182
Xu, J., Wang, H., Zhu, Z., Ji, F., Yin, X., Hong, Q., Shi, J., 2016. Isolation and characterization of Bacillus amyloliquefaciens ZDS-1: exploring the degradation of zearalenone by Bacillus spp. Food Control, 68: 244-250.
https://doi.org/10.1016/j.foodcont.2016.03.030
Xu, L., Ahmed, M.F., Sangare, L., Zhao, Y.J., Selvaraj, J.N., Xing, F.G., 2017. Novel aflatoxin-degrading enzyme from bacillus shackletonii L7. Toxins, 9(1): 36.
https://doi.org/10.3390/toxins9010036
Zhai, Y., Hu, S., Zhong, L., Lu, Z., Bie, X., Zhao, H., Zhang, C., Lu, F., 2019. Characterization of deoxynivalenol detoxification by Lactobacillus paracasei LHZ-1 isolated from Yogurt. Journal of Food Protection, 82: 1292-1299.
https://doi.org/10.4315/0362-028X.JFP-18-581
Zhang, H., Dong, M., Yang, Q., Apaliya, M.T., Li, J., Zhang, X., 2016. Biodegradation of zearalenone by Saccharomyces cerevisiae: possible involvement of ZEN responsive proteins of the yeast. Journal of Proteome research, 143: 416-423.
https://doi.org/10.1016/j.jprot.2016.04.017
Zhao, H., Wang, X., Zhang, J., Zhang, J., Zhang, B., 2016. The mechanism of Lactobacillus strains for their ability to remove fumonisins B1 and B2. Food and Chemical Toxicology, 97: 40-46. https://doi.org/10.1016/j.fct.2016.08.028
Zhao, L., Jin, H., Lan, J., Zhang, R., Ren, H., Zhang, H., Yu, G., 2015. Detoxification of zearalenone by three strains of Lactobacillus plantarum from fermented food in vitro. Food Control, 54: 158-164. https://doi.org/10.1016/j.foodcont.2015.02.003
Zhao, Z., Zhang, Y., Gong, A., Liu, N., Chen, S., Zhao, X., Li, X., Chen, L., Zhou, C., Wang, J., 2019. Biodegradation of mycotoxin fumonisin B1 by a novel bacterial consortium SAAS79. Applied Microbiology and Biotechnology, 103(17): 7129-7140.
https://doi.org/10.1007/s00253-019-09979-6
Zheng, J., Wittouck, S., Salvetti, E., Franz, C.M.A.P., Harris, H.M.B., Mattarelli, P., O'Toole, P.W., Pot, B., Vandamme, P., Walter, J., Watanabe, K., Wuyts, S., Felis, G.E., Gänzle, M.G., Lebeer, S., 2020. A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. International Journal of Systematic and Evolutionary Microbiology, 70(4): 2782-2858. https://doi.org/10.1099/ijsem.0.004107
Zhu, Y., Hassan, Y.I., Lepp, D., Shao, S., Zhou, T., 2017. Strategies and methodologies for developing microbial detoxification systems to mitigate mycotoxins. Toxins, 9(4): 130. https://doi.org/10.3390/toxins9040130
Zhu, Y., Drouin, P., Lepp, D., Li, X.Z., Zhu, H., Castex, M., 2021. A novel microbial zearalenone transformation through phosphorylation. Toxins, 13: 294.
https://doi.org/10.3390/toxins13050294
Zoghi, A., Khosravi-Darani, K. and Hekmatdoost, A., 2021a. Effects of pretreatments on patulin removal from apple juices using lactobacilli: binding stability in simulated gastrointestinal condition and modeling. Probiotics and Antimicrobial Proteins, 13: 135-145.
https://doi.org/10.1007/s12602-020-09666-3
Zoghi, A., Khosravi-Darani, K. and Sohrabvandi, S., 2014. Surface binding of toxins and heavy metals by probiotics. Mini-Reviews in Medicinal Chemistry, 14: 84-98.
Zoghi, A., Khosravi-Darani, K., Sohrabvandi, S., Attar, H., Alavi, S.A., 2017. Effect of probiotics on patulin removal from synbiotic apple juice. Journal of Science of Food and Agriculture, 97: 2601-2609. https://doi.org/10.1002/jsfa.8082
Zoghi, A., Khosravi-Darni, K. and Sohrabvandi, S., 2018. Patulin removal from synbiotic apple juice using Lactobacillus plantarum ATCC 8014. Journal of Applied Microbiology, 126: 1149-1160. https://doi.org/10.1111/jam.14172
Zoghi, A., Massoud, R., Todorov, S.D., Chikindas, M.L., Popov, I., Smith, S., Khosravi-Darani, K., 2021b. Role of the lactobacilli in food bio-decontamination: Friends with benefits. Enzyme and Microbial Technology, 150: 109861.
https://doi.org/10.1016/j.enzmictec.2021.109861
Zou, Z.Y., He, Z.F., Li, H.J., Han, P.F., Meng, X., Zhang, Y., Zhou, F., Ouyang, K.P., Chen, X.Y., Tang, J., 2012. In vitro removal of deoxynivalenol and T-2 toxin by lactic acid bacteria. Food Science and Biotechnology, 21: 1677-1683.
https://doi.org/10.1007/s10068-012-0223-x
DOI: https://doi.org/10.26789/AEB.2024.01.007
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Alaleh Zoghi, Svetoslav Dimitrov Todorov, Kianoush Khosravi-Darani

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.