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PCR analysis of genes involved in base excision repair pathway in
rice seedlings under Cr(III) exposure
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Abstract: The base excision repair (BER) pathway is an essential defense mechanism in plants against oxidative damage of DNA. Previous
studies have reported that chromium (Cr) exposure causes oxidative stress and DNA damage due to accumulation of reactive oxygen species
(ROS). In this study, hydroponic experiments were carried out to investigate expression of 21 candidate genes involved in BER pathway in
rice seedlings exposed to Cr(III) using qRT-PCR analysis. Changes of H2O2 and O−·2 content in rice tissues and the relative growth rate of
rice seedlings were also determined. Results indicated that Cr(III) exposure caused dose-dependent inhibition on the relative growth rate of
rice seedlings. H2O2 content in roots was significantly increased, while changes of H2O2 and O−·2 content in shoots was consistent. PCR
analysis showed that transcriptional changes of 21 selected candidate genes to Cr(III) exposure were tissue specific. BER pathway in roots
was repressed by Cr(III) treatment but activated in shoots, suggesting that the BER pathway would play different roles in regulating and
repairing DNA damage caused by Cr(III) exposure in different rice tissues.
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1 Introduction

Plant growth and development are detrimentally impacted by
various biotic and abiotic factors, such as parasite, cold, heat,
salinity and heavy metals (Tuteja et al., 2009; Yu and Feng,
2016; Yu et al., 2018a). Accumulation of reactive oxygen
species (ROS) in plant cells is a typical reaction to different
stresses (Fones et al., 2013; Tuteja et al., 2009). ROS mainly
includes hydrogen peroxide (H2O2), superoxide radical (O−·

2

), singlet oxygen and hydroxyl radical (OH·), which are
intrinsically formed during basic cellular metabolism at very
low levels as a potential signal massager under favorable
conditions (You and Chan, 2015). Un-expected enhancement
of ROS in plant cells leads to negative effects on nucleic acids,
membrane lipids and proteins (Bissenbaev et al., 2011), and
even influences and causes cell homeostasis and/or DNA
damage, eventually activates cell death programs and the
BER pathway (Fones et al., 2013; Lu et al., 2017; Singh et
al., 2009).

From an experiment, Georgiadou et al. (2018) reported
that heavy metals caused ROS accumulation and cellular
damage in plants. Previously, we also found that Cr expo-
sure resulted in over-load of ROS in rice tissues (Yu et al.,
2018b). Cr(III) is one of the most frequently detected species

in the family of Cr. Cr exposure caused DNA damage, due
to its strong binding tendency to sulfhydryl and carboxyl
(Ramirez-Diaz et al., 2008), which further led to genotoxic
stress and genomic instability (Tuteja et al., 2009). In fact,
plants are able to trigger DNA repairing pathway to cope
up with such damages (Beatriz et al., 2018). Mostly, DNA
repair pathway includes base excision repair (BER), mis-
match repair (MMR), nonhomologous end joining (NHEJ),
nucleotide excision repair (NER) and homologous recombi-
nation (HR). The BER pathway is a primary DNA repairing
channel, which fixes and removes damaged bases from the
DNA chain through deamination, oxidation and alkylation
in plants and mammals (Li et al., 2018). It was found that
the BER pathway repaired DNA damage caused by Mn ions.
Also, severe impact of Mn exposure on the BER pathway was
problematic to yeast S. cerevisiae (Stephenson et al., 2013).
Cd interfered and inhibited the BER pathway, which caused
adverse effects on humans (Giaginis et al., 2006). Cr(VI) re-
pressed expression of DNA repairing genes, leading to DNA
damage in human bronchial epithelial cell line (16HBE cells)
(Hu et al., 2018). To our knowledge, study of Cr(III) exposure
on BER pathway in plants is still ambiguous. In this study,
genetic responses of Cr(III) exposure to the BER pathway
in rice seedlings were evaluated using qRT-PCR technique
to analyze 21 candidate genes involved. Changes of H2O2
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and O−·
2 content in rice tissues and seedling biomass were

also measured to determine phytotoxicity of Cr(III) exposure.
These works would be useful for better understanding the
crosstalk of Cr(III) exposure with rice BER pathway due to
accumulation of ROS in rice tissues.

2 Materials and Methods

2.1 Plant materials

Seedlings of rice (Oryza sativa L. cv. XZX 45) were pre-
pared according to our previous work (Yu and Zhang, 2017).
Rice seeds were planted in sandy soil under laboratory con-
dition (Temperature 25C, Humidity 60%, Illumination inten-
sity 7,000 lx) and irrigated with modified ISO 8692 nutrient
medium. After 16 d of growth, rice seedlings were pre-
collected, according to biomass size, and incubated in ISO
8692 nutrient medium for 12 h. After pre-treatment, rice
seedlings were collected for the subsequent experiment.

2.2 Exposure regime of plants

Ten rice seedlings with similar size were exposed to 50 mL
Cr(III) solution for 24 h. Four different Cr(III) treatments
were conducted, namely 0, 12.0, 24.0 and 40.0 mg/L. Each
treatment concentration was performed with four indepen-
dent replicates. Chromium nitrate (Cr(NO3)·9H2O) (purity
> 99%) with analytical grade was used.

2.3 Measurement of relative growth rate

The relative growth rate of rice seedlings was determined
as our previous study (Yu and Zhang, 2017), according to
biomass changes of seedlings.

2.4 Analysis of H2O2 and O−·
2

Contents of H2O2 and O−·
2 in rice tissues were detected after

Cr(III) exposure according to the methods of Li (2006).

2.5 Analysis of gene expression using
qRTPCR

After exposing to Cr(III) solution (40 mg/L), rice seedlings
were collected and divided into roots and shoots. Extrac-
tion of total RNA from treated and non-treated rice tissues
was conducted as previously described (Yu et al., 2018a).
Briefly, total RNA was extracted by Ultrapure RNA Kit
(CWBIO, P.R. China), and the synthesis of cDNA was per-
formed by the HiFiScript gDNA Removal cDNA Synthesis
Kit (CWBIO, P.R. China). qRT-PCR was determined by
a 7500 Fast Real-Time PCR system (Applied Biosystems)
with the UltraSYBR Mixture (CWBIO, P.R. China). The
OsGAPDH1 (glyceraldehyde-3-phosphate dehydrogenase,
LOC−Os08g03290.1) was selected as the internal control

(Yu et al., 2018b). Primers sequences used are listed in Table
1. The relative expression of each tested genes was deter-
mined by the 2∆∆ CT method (Livak and Schmittgen, 2011).
All data were referred to mean of 4 independent biological
replicates SD.

Table 1. Sequences of primers used in this study

Gene name Locus identifier Primer sequence (5’-3’) Product
length (bp)

F-GACAGCAGGTCGAGCATCTTC

R-CAGGCGACAAGCTTGACAAAG

F-CTGGCAAGAGCTTAACCCCA

R-TCTGTGCCCAACCAGCATAG

F-CAAAGACTGTGGCGTGTGTG

R-CTAGCTGTTGCAGGAACCCA

F-CCAAAGGATGAGTGGGAACC

R-GAAAGCTGAAGGGCAGATGT

F-ACAACTCCAGCAACCGAAGA

R-GAGCACGGGCACAGACATAG

F-GGATGGGGTGGTCTTTGTA

R-AGTTTTCTTTGGCTGTGAG

F-GTGAGAGAACATCAAGCC

R-TCCCCAGAGAATAAAGAC

F-ACGGTGAAGAGATTCTGGCA

R-TGGCTTTTGGGACTACTCGT

F-GGAGGTGAACGAGATGTGGG

R-AATCCCCAATGCCACGAACT

F-AGGACTGCTCCTGTGTTTGG

R-GCTCCAACTCCCTCCTTGTC

F-AAGCGAAAGAGTAGGGAG

R-AGCAGAACTGGTCAAAGA

F-CGGTGTCACTAACCTTTGC

R-CACGACTTCATTTCCTCAT

F-GCTTGTGAGTTCATTTCCG

R-TGAGCCTTGTTTTTGTTTC

F-GCCACATCTACTTCACGC

R-AATAGCAGACCTCTCCTT

F-GCCGCGACAATCCATAGAGA

R-CTTTCTGGAAGCGGATCGGT

F-AAAGGAGGTCCCACCAAAG

R-AGACGAGTAACGCCAATGC

F-TACTTTGGTCCCCCCTG

R-CTGCTTTCGCCCTTTTC

F-GTGGTTGTCAATCCGTTC

R-ATAGTTGTTATCCCGTGC

F-ATTGTAGCAGAAGGGGA

R-CAGGACCAGGAATGAAC

F-TTTGCGGTGTAAACGCTGTG

R-CAACTGATGAAGCCGCCAAG

F-TGCCACCAAAGAACTAACAG

R-CATCAAATGACGAAGAAACC

F-GTTAGCAGAAAAAACCGT

R-AACATAGGACCAACAGGA

osgapdh1 LOC_Os08g03290.1 74

osogg1 LOC_Os02g34750.1 87

osnth LOC_Os06g13070.1 112

osnth- like1 LOC_Os11g16580.1 120

osape2 LOC_Os09g36530.1 214

osxrcc1 LOC_Os06g05190.1 225

osung LOC_Os04g57730.1 114

osmuty LOC_Os12g10850.1 220

osmuty- like LOC_Os12g10900.1 140

osmpg LOC_Os02g53430.1 104

osmbd4 LOC_Os09g01290.2 346

ospcna LOC_Os02g56130.1 187

ospolδ3 LOC_Os01g10690.1 249

ospolδ2 LOC_Os03g03650.1 200

ospolδ4 LOC_Os08g06620.1 458

ospolδ4A LOC_Os09g34850.1 215

ospolδ1 LOC_Os11g08330.1 161

ospolε1 LOC_Os02g30800.1 306

ospolε2 LOC_Os05g06840.1 445

ospolε3 LOC_Os09g39490.1 148

osfen1 LOC_Os05g46270.1 268

oslig1 LOC_Os10g34750.1 234

2.6 Statistical analysis

Analysis of variance (ANOVA) and Tukeys multiple range
tests were used to determine the statistical significance at
0.01 or 0.05 between treatments (Zar, 1999).
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3 Results

3.1 Relative growth rate of rice seedlings
exposed to Cr(III)

Compared with untreated seedlings, relative growth rates of
rice seedlings showed a downward trend after Cr(III) expo-
sure for 24 h (Fig. 1). Relative growth rates of rice seedlings
decreased to 9.79% at 12.0 mg Cr/L, and then declined dra-
matically to approximately 2.99% by 40.0 mg Cr/L. Overall,
relative growth rate was significantly declined with enhanc-
ing Cr(III) concentrations.

Figure 1. Changes of relative growth rate (%) of rice seedlings exposed
to Cr(III) for 24 h. Data refer to the mean ± SD of four replicate samples.
Vertical lines represent SD.

3.2 Change of H2O2 and O−·
2 content in rice

seedlings exposed to Cr(III)
(Fig. 2a & 2b) showed the changes of H2O2 and O−·

2 content
in different tissues (roots/shoots) after 24 h period of Cr(III)
exposure. Responses of H2O2 content in rice tissues showed
differently (Fig. 2a). Compared with control shoots, H2O2

content in shoots exposed to 40.0 mg/L increased to approx-
imately 1.38-fold. However, much more changes of H2O2

content in roots were detected, which is approximately 3.01-
fold higher than control. Changes of O−·

2 content in both
shoots and roots to Cr(III) exposure were identical, where the
fold changes of O−·

2 content were determined to be 1.42 and
1.37 in shoots and roots, compared with controls, respectively
(Fig. 2b).

3.3 Expression of genes involved in BER path-
way in rice seedlings exposed to Cr(III)

Twenty-one genes were identified in rice BER pathway using
the online program of KEGG (https://www.kegg.jp/) (Fig.
3). In shoots, almost all identified genes showed positive
expression after Cr(III) exposure, but only 13 genes were
significantly up-regulated (p< 0.05) (Fig. 4a). In roots, 21

genes was down-regulated, but 18 genes were significantly
repressed by Cr(III) exposure (p<0.05) (Fig. 4b).

4 Discussion
Previous studies reported that Cr(III) exposure caused
over-generation of ROS in plant cells, leading to oxidative
stress (Balamurugan et al., 2002; Wang et al., 2006b),
which eventually resulted in DNA lesions in mammalian
(Hashiguchi et al., 2004). It was found that Cr(VI) exposure
induced DNA damage in mammalian cells, which was
repaired by BER pathway (Bryant et al., 2006). However,
many heavy metals inhibited DNA repair through the BER
pathway in 293T cells (Wilson et al., 2004). It was found that
Cr(VI) exposure significantly increased ROS content in tall
fescue (Huang et al., 2018). The mustard treated with 20 µM
Cr(VI) also showed significant increases of H2O2 in tissues,
where more H2O2 accumulation was detected in roots rather
than leaf (Pandey et al., 2005). In this study, Cr(III) exposure
affects and/or inhibits the biomass growth of rice seedlings,
and caused accumulation H2O2 and O−·

2 in rice tissues. PCR
analysis revealed that expression of 21 selected candidate
genes involved in rice BER pathway were inconsistent in rice
tissues (roots/shoots), suggesting their different responsive
and repairing strategies between roots and shoots of rice
seedlings after Cr(III) exposure. This is most likely due to
the fact that there are significant differences in speciation,
localization and subcellular distribution of Cr(III) in rice
seedlings between shoots and roots (Yu and Feng, 2016).

It is known that BER pathway, including short-patch repair
(SP) and long-patch repair (LP), plays an important role in
cellular defense against DNA damage (Cordoba-Canero et
al., 2009). The first step in BER pathway is to recognize and
remove damaged bases by various types of glycosylases,
namely 8-oxo-G repair glycosylases OGG1 (Excision of
8-oxo-G), MYH (MUTY homolog, Excision of A mispaired
with 8-oxo-G), oxidized pyrimidine glycosylases NEIL1-3
(Excision of oxidized pyrimidines), nth (Excision of
oxidized pyrimidines), uracil/thymine glycosylases UNG
(Excision of uracil), MBD4 (Binds methylated DNA and
excision of 5-hydroxymethyluracil), TDG (Excision of
mismatched thymines and uracils), SMUG1 (Excision of
uracil) and Methyl-purine glycosylases MPG (Excision of
methyladenine and methylguanine) (Kurthkoti et al., 2010;
Sharbeen et al., 2015). The second step involved in BER
pathway is cleavage of the sugar-phosphate backbone of
DNA at the site where the damaged base was removed by
specific glycosylase (Murphy et al., 2009). As shown in Fig.
4a, relevant genes of osogg1 and osape2 were expressed
differentially in different tissues of rice seedings under
Cr(III) exposure. In fact, expression patterns of osogg1,
osnth, osnth-like1, osung, osmuty, osmuty-like, osmpg,
osmbd4 and osape2 genes in shoots generally showed
upward trend, of which osnth, osmuty and osmbd4 were
significantly increased (p<0.05). It has been reported
that in Arabidopsis nth gene played a major role in DNA
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Figure 2. Fold change of H2O2 (a) and O−·2 (b) content in rice seedlings exposed to Cr(III) for 24 h. Data refer to the mean ± SD of four replicate samples.
Vertical lines represent SD. *p<0.05 indicated significant difference between the exposed group and control.

Figure 3. Schematic illustration for the pathway of base excision re-
pair (BER) in plants. The pathway was taken from the database KEGG
(https://www.kegg.jp/kegg/pathway.html). Green color indicated the defined
genes functioning in the rice LP BER pathway, while pink color refers to
the defined genes involved in the rice SP BER pathway.

repair against DNA damage (Roldanarjona et al., 2000).
Overexpression of gene mbd4l in Arabidopsis stimulated
BER pathway and had a positive effect on repairing DNA
damage caused by oxidative stress (Nota et al., 2015).
In roots (Fig. 4b), Cr(III) exposure caused remarkable
down-regulation of osogg1, osnth, osnth-like1, osung,
osmuty, osmuty-like, osmpg, osmbd4 and osape2 genes
(p<0.05).

It is noticed that the coming step in SP of BER pathway
is to fill up the gap by XRCC1 (X-ray repair cross-
complementing protein 1) and DNA polymerase (polβ).
However, a different repairing procedure has been found in
LP of BER pathway, in which DNA polymerases, such as
polδ, polε, polβ and PCNA, are mainly responsible for filling
up the gap and replacing the strand (Sokhansanj et al., 2002).
In this study, after Cr(III) exposure, expression of osxrcc1
and ospcna genes in shoots showed positive responses,
but negative expression in roots. xrcc1 is an important
component in the BER pathway in plants, functioning in
DNA repair against oxidative damage (Martinez-Macias
et al., 2013). PCNA is also involved in DNA repair or
replication and induced activity of POLδ (Strzalka and
Ziemienowicz, 2011). It has been reported that POLδ
was important for DNA repair, and POLε played a role in
maintaining genomic stability (Nicolas et al., 2016; Okimoto
et al., 2016). It is evident that dysfunction of POLδ led
to genomic instability (Zhang et al., 2016). In this study,
expression of ospolδ and ospolε genes (ospolδ1, ospolδ2,
ospolδ3, ospolδ4, ospolδ4a, ospolε1, ospolε2, ospolε3)
in shoots were up-regulated, of which ospolδ1, ospolδ2,
ospolδ3, ospolε1, ospolε2 and ospolε3 showed significant
up-regulation compared with control (p<0.05). In roots,
expression levels of all ospolδ and ospolε genes were
significantly down-regulated (p<0.05), except for ospolδ3
and ospolε3.

In LP BER, an additional step is to cleave the incorrect
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Figure 4. Expression analysis of 21 candidate genes in shoots (a) and roots (b) of rice seedlings exposed to 40 mg Cr(III)/L for 24 h. Data were the mean SD
of four replicate samples. Vertical lines represent SD. *p<0.05 indicated significant difference between the exposed group and control.

DNA bases by flap-endonuclease (FEN1) and PCNA
(Sharbeen et al., 2015; Sokhansanj et al., 2002). In our
results, significant up-regulation of osfen1 gene and ospcna
in shoots was detected, where in roots it was contrary.
Deficiency of fen1 in plant cells led to hypersensitivity to
H2O2 accumulation in vertebrate cells (Asagoshi et al.,
2010). The final step is to seal the DNA ends. In SP of
BER pathway, it was completed by the DNA ligase 3 (lig3)
and xrcc1, where the DNA ligase 1 (lig1) and pcna played
a central role in LP BER. In this study, all genes (oslig1,
ospcna and osxrcc1) involved in the final step of BER
pathway were up-regulated significantly in shoots. However,
in roots expression of all genes was negative. Overall, the
transcription patterns of candidate genes involved in BER
pathway were opposite between shoots and roots.

It is evident that heavy metal directly or indirectly induced
ROS production, and led to genotoxicity in vivo, for example,
inhibiting DNA repair and causing gene abnormalities (Wang
et al., 2006a; Yuan et al., 2016). Cd at high concentrations
(>50 µM) caused necrosis and repressed DNA repair
(Giaginis et al., 2006), where Cr(VI) also inhibited DNA
repair in mammalian cells (Hu et al., 2018; Templeton and
Liu, 2010). After 24 h of Cr(III) exposure, down-regulation
of genes involved in BER pathway were observed in roots,
indicating inhibition of BER pathway. This is most likely
due to the fact that over accumulation of Cr(III) in rice roots
affected the enzymes of DNA repair and led to genotoxicity.
However, in shoots, after Cr(III) exposure, the genes
responsible for BER pathway were all up-regulated. It means
that BER pathway against DNA damage was activated due
to Cr(III) exposure in rice seedlings.

Our findings demonstrated that Cr(III) inhibited the growth
of rice seedlings, and caused accumulation of H2O2 and O−·

2

in rice tissues. PCR analysis of gene transcription reveled that
down-regulation of genes resulted from over-accumulation
of ROS in roots as well as metal ions binding with specific
protein, suggesting inhibition of Cr(III) exposure on BER
pathway in roots. In shoots, BER pathway was activated by

less accumulation of metal ions and ROS, and subsequently
stimulated the plant DNA damage repairing system. Overall,
different responsiveness and regulation mechanisms existed
between roots and shoots of rice seedlings during repairing
of DNA damage caused by Cr(III) exposure through BER
pathway.
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