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Abstract: Currently green nanotechnology presents a smart solution to produce novel nanostructured materials that are highly safe and
environmental friendly. In this work, zinc oxide nanoparticles (ZnO NPs) were prepared by employing aqueous mint (M. piperita) seeds
extract at 60◦C, as a green synthesis method. Mint seeds extract was chosen among the 6 plant seeds that were the subject of this study due
to it represents the highest content of polyphenols and flavonoids, as well as antioxidant activity. High Performance Liquid Chromatography
(HPLC) showed that syringic acid (16%), rutin (22%), and apigenin-7-O-glucoside (29%) were the main component of ethanol mint seeds
extract. The produced ZnO NPs were examined using an ultraviolet-visible spectrophotometer (UV-VIS), X-ray diffraction (XRD) and
transmission electron microscope (TEM). The UV spectrum revealed maximum absorption value at 376 nm, related to green synthesized
ZnO NPs. The XRD study demonstrated the creation of ZnO NPs. ZnO NPs were spherical in shape with average particles size of 80±36
nm. The antibacterial activity of aqueous mint seeds extract and green synthesized ZnO NPs were investigated on E. coli and S. aureus and
antioxidant activity as well. Our findings demonstrate a facile approach to improve the antibacterial potential of the ZnO NPs, and therefore
could be a promising multifunctional bioactive material for wound healing and other related applications.
Keywords: Flavonoids, HPLC, Mint, aqueous extract, syringic acid, rutin

Correspondence to: Abdul Aziz M. Gad, National Research Centre, 33 El Buhouth Street, Dokki, Cairo, Egypt; E-mail: abdgad1983@yahoo.com

Received: August 27, 2023; Accepted: October 17, 2023; Published Online: March 27, 2024
Citation: Gad, A.A.M., Bassuiny, R.I., Zaki, E.R., Yassin, M.A., Wahdan, M., Tolba, E., 2024. Antibacterial and antioxidant activity of green synthesized
Zinc oxide nanoparticles using polyphenol extract from Mentha piperita seeds. Applied Environmental Biotechnology, 9(1): 1-10.
http://doi.org/10.26789/AEB.2024.01.001
Copyright: Antibacterial and antioxidant activity of green synthesized Zinc oxide nanoparticles using polyphenol extract from Mentha piperita seeds. ©
2024 Abdul Aziz M. Gad et al. This is an Open Access article published by Urban Development Scientific Publishing Company. It is distributed under the
terms of the Creative Commons Attribution-Noncommercial 4.0 International License, permitting all non-commercial use, distribution, and reproduction in
any medium, provided the original work is properly cited and acknowledged.

1 Introduction

Nanoparticles (NPs) play a crucial role in various medical
and nanotechnological applications is specially the green syn-
thesized NPs (Jiḿenez-Rosado et al., 2022). Various physical
and chemical approaches have been reported for the synthe-
sis of NPs (Talam et al., 2012). In chemical approach, NPs
are created using a bottom up chemical process using metal
salt and reducing agent such sodium borohydride, hydrazine,
etc.. Here, the metal cation is reduced by the reaction to
a neutral state, creating a nucleation site where the metal
atoms can gather and eventually form NPs (Petcharoen and
Sirivat, 2012; Saleem et al., 2021). However, such reducing
agents frequently result in the production of toxic substances
(Sheldon, 2005) and raise the cost of the final product, hinder-
ing scientific advancement and increasing carbon emissions
(Prabhu and Poulose, 2012). Additionally, they should not
be used in food, medical and pharmaceutical applications

because of their harmful effects on humans (Varma, 2012).

Polyphenols are naturally substances extracted from plants
that are sorted by chemical structure, biological function,
and source. Concerning to aromatic rings and their ability
for combination to various compounds, they can be classi-
fied into two main categories: flavonoid and non-flavonoid
(Lipiński et al., 2017; Guneidy et al., 2020). According to
Gironi and Piemonte (2011), polyphenols are distinguished
by number of phenol groups in each molecule (generally,
each molecule contains between 2 and 14-OH groups, which
are linked to their antioxidant activity). They can prevent
the formation of toxic secondary products and act as reduc-
ing agents in the synthesis of NPs due to their abundant
availability of -OH groups (Agarwal et al., 2017). By solu-
bilizing these polyphenols in polar solvents like alcohol or
water, it is simple to extract them from plants (Prado et al.,
2021). Polyphenols extraction parameters such as temper-
ature, concentration and time should be first optimized to
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maximize their antioxidant activity, to reduce NP starting
materials efficiently (Özbek et al., 2020). Today, metals and
metal oxide NPs like silver, gold, selenium, iron, copper, and
their oxides have been extensively synthesized using various
plant extracts such as Glycyrrhiza glabra (Vivekananth et
al., 2021), Calendula officinalis (Nematollahi et al., 2021),
Phoenix dactylifera (Abdullah et al., 2020; Rajeswari et al.,
2021), and Capsicum annuum (Jiḿenez-Rosado et al., 2022).
Among them, nanostructures ZnO NPs were found to be
biocompatible and nontoxic for biomedical application in-
cluding wound healing and drug delivery applications due
to their antimicrobial, anti-inflammatory, and antioxidant
activities.

In the culture media, the quantitative antimicrobial activi-
ties of metal oxide (ZnO) NPs were assessed against Gram-
positive and Gram-negative bacteria as well as pathogenic
microorganisms that can cause diseases in plants and animals
(Luo et al., 2013; Jiang et al., 2020). Reactive oxygen species
found in these metal oxide particles may be the main way
for destroying bacteria (Hu et al., 2009; Siddiqi et al., 2018).
The direct interaction of ZnO NPs with cell surfaces, which
influences the permeability of cell membranes, constitutes
the ZnO NPs’ antibacterial mechanism. After that, NPs enter
bacterial cells and cause oxidative stress, which ultimately re-
sults in cell death and growth inhibition (Xie et al., 2011; Jain
et al., 2020). The demonstration of ZnO NP’s antibacterial
activity encourages its use in crop seed preservation through-
out the period of storage prior to cultivation (Abdelmigid et
al., 2022).

The previous studies of Pramila et al. (2012), Sharma et al.
(2018), Abdelkhalek and Al-Askar (2020), Koli et al. (2022)
and Doǧaroǧlu et al. (2023) have used mint leaves extract for
the green synthesis of ZnO NPs. To the best of our knowl-
edge, the current research is considered the first study to
prepare ZnO NPs from mint seeds extract. Consequently, the
primary objective of this work was to select the plant seeds
with the highest concentration of polyphenol and flavonoids
and greatest antioxidant potential to test its application in the

green synthesis of ZnO NPs. To accomplish this objective,
polyphenol extraction should be firstly optimized to maxi-
mize their antioxidant activity, the optimal polyphenol mint
extract at 60 oC was used to obtain a variety of ZnO NPs, and
their antibacterial and antioxidant properties were evaluated
as well. Synthesized ZnO NPs were confirmed using UV,
XRD and TEM spectral analyses.

2 Materials and Methods

2.1 Chemicals

Ethanol, dimethyl sulfoxide (DMSO) and Folin-Ciocateus
reagent were obtained from Merck Company (USA). While
aluminum chloride, 1,1-Diphenyl-2-picryl-hydrazyl (DPPH),
L-ascorbic acid, sodium acetate, zinc acetate dihydrate, rutin,
quercetin, gallic acid, and sodium hydroxide pellets were
obtained by Sigma Aldrich company (USA). All chemicals
used in this study were of analytical grade and of high purity.

2.2 Plant materials

The seeds of six plants (Table 1) belong to different fami-
lies; namely Liliaceae: Allium cepa, Lamiaceae: Mentha
piperita, Rosaceae: Fragaria ananassa, Vitaceae: Vitis
vinifera, Solanaceae: Solanum lycopersicum and Brassi-
caceae: Brassica oleracea were bought from various mar-
kets in Egypt. The collected plant seeds were examined by
Herbachium Botany Department, National Research Centre
(Dokki Cairo, Egypt).

2.3 Preparation of plant extracts

Dry seeds (1 g) of each plant were ground and mixed with
10 ml of solvent (water -70% ethanol) for 2 h at room tem-
perature. The extracted material was centrifuged at 5,000 g
for 10 min, filtered through Whatman filter paper No.1, and
stored at -20◦C for later analyses.

Table 1. Total phenolic content, total flavonoid content and antioxidant activity of different plant seed extracts

Phenolics
(mg/g dry seed)

Flavonoids
 (mg/g dry seed)

Ic50 (mg/ml)       Phenolics
(mg/g dry seed)

Flavonoids
  (mg/g dry seed)

Ic50 (mg/ml)

A. cepa 1.2±0.18c 0.18±0.02b 4.7±0.20a 1.4±0.26b 0.7±0.13b 3.5±0.15a

M. piperita 2.6±0.50a 1.20±0.15a 0.5±0.03b 6.3±0.67a 3.7±0.34a 0.4±0.02b

F. ananassa 0.5±0.04c 0.13±0.02b 2.4±0.05b 1.0±0.06b 0.5±0.12b 0.4±0.02b

V. vinifera 1.2±0.13c 0.50±0.01c 2.4±0.07b 3.5±0.33c 0.7±0.11b 2.0±0.09b

S. Iycopersicum 1.5±0.13c 0.55±0.12c 3.6±0.11b 1.7±0.25b 1.6±0.13b 1.9±0.09b

B. oleracea 1.9±0.20d 0.96±0.16d 1.8±0.04b 2.4±0.26b 2.1±0.20b 0.4±0.02b

Water extract 70% ethanol extract 

Plant name

Note: Values are presented as means ± SD (n = 4). Means with different superscript letters within the same column are significantly different at P<0.05.
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2.4 Total phenol content

Total phenol was estimated using the Folin-Ciocateu’s
reagent (Djeridane et al., 2006). Total phenol content was
reported as mg of gallic acid equivalent (GAE) per g of dry
seed. Absolute ethanol was used as a blank.

2.5 Total flavonoid content

Lin and Tang (2007), method was used to calculate the total
flavonoids present in the extracted samples. Total flavonoids
were determined using a calibration curve that was created
using quercetin as the reference. The amount of flavonoids
was measured in milligrams per gram (mg/g) of dry seed as
rutin equivalents (RE).

2.6 DPPH free radical scavenging assay

The DPPH free radical method was used to determine sam-
ples’ free radical scavenging activities (Blois, 1958; Abdel-
Hady et al., 2023). To investigate the antioxidant activity
of the plant seed extracts, freshly generated DPPH solution
(0.1 mM) was added to a range of sample concentrations,
agitated, left for 30 minutes in the dark at room temperature,
and the absorbance was measured at 517 nm against a blank.
DPPH (IC50) was calculated from the graph of I% (inhibition
percentage) versus sample concentration.

2.7 High performance liquid chromatogra-
phy (HPLC) of phenolic compounds

Mint seeds extract (70% ethanol) was analyzed using HPLC
at the National Research Center in Cairo, Egypt. The signal-
to-noise ratio was adjusted at three or greater and considered
the detection border (Kim et al., 2006).

2.8 Preparation of aqueous mint seeds extract

Aqueous mint seeds extract was made by boiling 10g of
powdered dried mint seeds in 100 ml of distilled water for two
hours at 60◦C. After cooling, it was filtered using Whatman
filter paper No.1. For subsequent experiments, the filtrate
was kept at 4◦C in the refrigerator.

2.9 Synthesis of zinc oxide nanoparticles

An aqueous solution (0.2 M) of zinc acetate dihydrate was
prepared. To create zinc oxide nanoparticles (ZnO NPs), the
daily prepared zinc acetate solution was combined with 70ml
of aqueous mint seeds extract. After the reacted solution
was blended, agitated, and the pH was increased to 12 using
NaOH (3 M), a pale-white ZnO NPs suspension was created.
The two-hour stirring pale-white ZnO NPs were precipitated,
3 times rinsed with sterile distilled water, then washed with
ethanol to remove any impurities. After overnight drying

at 60◦C, a powder of ZnO NPs in the form of pale white
crystals was produced (Abdelkhalek and Al-Askar, 2020).

2.10 Characterization of ZnO nanoparticles

2.10.1 UVVis spectra analysis

UV/VIS spectrophotometry was used to characterize the as-
prepared ZnO NPs samples. In a 1cm path quartz cell, ultravi-
olet spectra in the range between 200-800 nm were collected
at room temperature and the absorbance was recorded at 376
nm.

2.10.2 Transmission Electron Microscopy (TEM)

A highly integrated compact transmission electron micro-
scope (TEM; JEOL, Peabody, MA, USA) at an accelerating
voltage of 80 kV was used to check the morphology of the
as-prepared ZnO NPs. A drop (20µl) of the ZnO NP suspen-
sions was applied to create the TEM grids, which were then
allowed to dry in air.

2.10.3 X-ray diffraction (XRD)

The XRD analysis was carried out using a Bruker D8 Ad-
vance X-ray diffractometer (Germany) at a 2θ (Bragg angle)
of 5-80◦. The diffraction patterns were collected at a volt-
age of 40 kV with a current of 40 mA, using copper (Kα)
radiation (1.5406 Å).

2.11 Antioxidant activity

Numerous concentrations of green synthesized ZnO NPs
were incubated with 0.1 mM DPPH solution to determine
Ic50 as described above.

2.12 Antibacterial activity study

Human-pathogenic bacterial strains were received from the
Marine Toxins Laboratory, Food Toxins and Contaminants
Department, National Research Centre, Cairo, Egypt. These
strains of pathogenic bacteria included Gram-negative (Es-
cherichia coli O157-H7 ATCC) and Gram-positive (Staphy-
lococcus aureus ATCC 13,565) bacteria. Dimethyl sulfoxide
(DMSO) served as the study’s negative control, while Gen-
tamicin which has potent antibacterial action against a variety
of bacterial strains, served as the study’s positive control (The
American Society of Health-System Pharmacists, 2015). Ex-
tracts from chemically manufactured ZnO NPs and green gen-
erated ZnO NPs were tested for their antibacterial activity us-
ing the well-diffusion method on Mueller-Hinton agar (Bauer,
1996). Each tested bacterial suspension (108 CFU/mL) was
applied to the surface of the plates in an amount of 0.1 ml.
The studied extracts were combined with wells punched in
the agar medium, dissolved in DMSO, and then incubated for
18 hours at 37◦C. Antibacterial activity was calculated as the
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diameter (mm) of distinct growth-inhibition zones against
each tested bacterial strain.

2.13 Determination of the minimum inhibi-
tion concentration (MIC)

The MIC values for the tested extracts were calculated using
the agar dilution diffusion method in accordance with M7-
A7 procedures, as advised by the National Committee for
Clinical Laboratory Standards (2009) (NCCLS). The wells on
Muller Hinton agar media were infected with 108 CFU/ml of
each pathogenic bacterium, and various doses (5-50 mg/ml)
of chemically manufactured ZnO NPs and green synthesized
ZnO NPs extracts were added. The wells were then kept at
37◦C for 18 hours. A MIC value was known as the minimum
extract concentration which inhibits bacterial growth.

2.14 Statistical analysis
The information is shown as the average values from one
to three separate experiments together with the standard de-
viation (SD). In order to analyze the data, Origin 8.0 was
used.

3 Results

3.1 Total phenolic and flavonoid content as
well as antioxidant capacity

The total phenolic content, flavonoid content and antioxidant
capacity for plant seed extracts in both water and 70% ethanol
are screened in Table 1. The extracts of 70% ethanol of
M. piperita had the greatest phenolic and flavonoid values
(6.3±0.67 mg GAE/g dry seed and 3.7±0.34 mg RE/g dry
seed, respectively) as well as antioxidant capacity (0.4±0.02
mg/ml). The remaining plant seeds under this study had
phenolic contents ranging from 0.5 to 2.4 mg GAE/g dry
seed and flavonoid contents ranging from 0.13 to 2.1 mg
RE/g dry seed.

3.2 Phenolic compounds of M. piperita
ethanolic extract (70%) using high per-
formance liquid chromatograph

HPLC analysis was performed to identify and quantify phe-
nolic compounds extracted from M. piperita ethanolic extract.
Fourteen phenolic compounds were identified as shown in
Table 2. HPLC analyses showed the presence of apigenin-7-
O-glucoside at the highest concentration (5 mg/g dry seed)
which accounts for 29% of the total detected phenols fol-
lowed by rutin (3.8 mg/g dry seed & 22%) and syringic acid
(2.8 mg/g dry seed & 16%). Both of vanillic and chlorogenic
acids have the same phenolic value (1.2 mg/g dry seed &
7%). Small amounts of rosmarinic acid (0.7 mg/g dry seed)
and quercetin (0.58 mg/g dry seed) were found with ratios

of 4 and, 3.3%, respectively. Phenolic levels for apigenin,
kaempferol p-coumaric and ferulic acid are almost equal. The
remaining identified phenolic compounds under this study
represent less than 4% of total ratio.

Table 2. HPLC identification and quantification of phenolic com-
pounds extracted from M. piperita 70% ethanol

Phenolic compound type Identified compound (mg/g dry seed) % (w/w)
Phenolic acids Gallic acid ND ND

Protocatechuic acid ND ND
p -hydroxybenzoic acid ND ND
Gentisic acid ND ND
Cinnamic acid ND ND
Syringic acid 2.8 16
Chlorogenic acid 1.2 7
Vanillic acid 1.2 7
Rosmarinic acid 0.7 4
p -coumaric acid 0.34 2
Ferulic acid 0.33 1.9
Sinapic acid 0.22 1.2
Caffeic acid 0.21 1.2

Flavonoids Catechin ND ND
Apigenin-7-O -glucoside 5 29
Rutin 3.8 22
Qurecetin 0.58 3.3
Apigenin 0.38 2.2
Kaempferol 0.33 1.9
Chrysin 0.25 1.4

Total phenolics 17.34 100

Note: % (w/w): % calculated relative to the total concentration of identified
phenolic compounds. ND: not detected, HPLC: High Performance Liquid
Chromatography.

Figure 1. UVVIS spectra of ZnO NPs in the range 250 600 nm.

3.3 Characterization of ZnO nanoparticles
3.3.1 UV/VIS spectroscopy

Adequate quantity of zinc oxide (0.01 g) was dissolved in
10 ml ethanol (96%) and sonicated for 10 min to detect the
UVvisible spectra. The UV/VIS spectrum was done in or-
der to specify and ascertain the optical properties of ZnO
NPs. Figure 1 depicts the ZnO spectrum with a designated
maximum absorption value at 376 nm confirming the suc-
cessful formation of ZnO NPs using aqueous mint extract.
The nanoparticle distribution is monodispersed, as evidenced
by this sharp peak, and the majority of the particles are at
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nanoscale. The bands of zinc colloids were detected at 376
nm, indicating that the extraction of mint seeds effectively
minimizes the zinc ion.

3.3.2 UV/VIS spectroscopy

The phase identity of the as-prepared ZnO NPs was deter-
mined by XRD. Figure 2 shows a typical XRD pattern of ZnO
NPs in the range of 10◦ to 80◦ at a scanning step of 0.01. A
number of diffraction peaks was observed for both samples at
2θ values of 31.3◦, 34.03◦, 35.7◦, 47.1◦, 56.4◦, 62.2◦, 66.3◦,
67.4◦ and 68.4◦, which are related to (100), (002), (101),
(102), (110) (103) (200), (112), and (201) diffraction planes.
However, the XRD data clearly illustrate the high purity and
development of Zincite phase in the presence and absence
of mint extract, according to JCPDS card no. 790208, (a =
2.207 nm and c = 3.379 nm).

Figure 2. Powder X-ray Diffraction Pattern of the as prepared ZnO
NPs (a) using NaOH and (b) mint extract.

Figure 3. Transmission Electron Microscopy Image of ZnO NPs
papered using (A, B) NaOH and (C, D) mint Extract.

Figure 3 shows the TEM micrograph of the as-synthesized
ZnO NPs. In the absence of mint extract, the ZNO NPs

were mainly spherical with an average particle size 213±89
nm. Although, the green synthesized ZnO NPs were also
spherical. The average particles size decreased to 80±36 nm.

3.3.3 Antioxidant activity

The antioxidant activity of test samples is frequently mea-
sured using a parameter known as the IC50 value, IC50 value
is the phenolic concentration required to scavenge 50% of
either DPPH free radicals. IC50 value obtained for green
synthesized ZnO NPs was found to be 98 mg/ml. Figure 4
shows that the percent inhibition increases with increasing
the concentration of green synthesized ZnO NPs.

Figure 4. DPPH Scavenging activity of green synthesized ZnO NPs
using M. piperita ethanolic extract.

3.3.4 Antibacterial activity

The antibacterial activity of the chemical and green synthe-
sized ZnO NPs via M. piperita seeds extract were investigated
against E. coli and S. aureus as pathogenic bacteria (Figure
5). The results indicated that green synthesized ZnO NPs was
significantly stronger antibacterial activity toward S. aureus
and E. coli with inhibition zones of 20±0.15 and 18±0.11
mm than chemically synthesized ZnO NPs with inhibition
zones of 15±0.10 and 16±0.12 mm, respectively (Table 3).
Moreover, the green synthesized ZnO NPs exhibited a greater
antibacterial capacity (18±0.11 mm-inhibition zone diame-
ter) against the E. coli strain than Gentamicin (15±0.10 mm).
The minimum inhibitory concentration (MIC) of green syn-
thesized ZnO NPs was 5 and 8 mg/ml while MIC of chemical
synthesized ZnO NPs was 12 and 20 mg/ml against E. coli
and S. aureus, respectively.

4 Discussion

Recently, the utilization of plant extracts in the synthesis
of nanoparticles (NPs) has been received a lot of attention
to reduce the need for pricey and harsh chemicals. Plant
biological compounds can be used either extracellularly or
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Figure 5. Antibacterial effects of chemical synthesized NPs (1),
green synthesized NPs (2), gentamicin (3) and negative control (4)
(A against E. coli, B against S. aureus).

intracellularly to complete the NP synthesis process as re-
ducing or capping agents. According to Debnath and Gupta
(2018), utilization of polyphenols as reducing agents could
help overcome these disadvantages and reduce production
costs while also providing environmentally friendly meth-
ods. In this work, M. piperita was chosen from plants under
this study as it represents the highest one in phenolic and
flavonoid contents as well as its antioxidant capacity. All of
the plants in this study had the highest overall concentration
of phenolic and flavonoid contents when ethanol extraction at
70% was used. Plant phenolics extraction is greatly affected
by sample and solvent type, time and storage conditions, and
extraction techniques (Eldurini et al., 2021). The ability of
phenolic compounds to function as reducing agents is primar-
ily responsible for their antioxidant properties. Phenolics’

Table 3. Inhibition zone diameter of chemical synthesized ZnO
NPs and green synthesized ZnO NPs extracts against some human
pathogenic bacterial strains

S. aureus E. coli
AqueousM. piperita seeds extract 11±0.11a 10 ± 1.0a

Chemically synthesized ZnO NPs 15±0.10 a 16 ±0.12a

Green synthesized ZnO NPs 20±0.15 b 18 ±0.11b

Gentamicin 20±0.12 b 15 ±0.11c

Sample
Inhibition zone diameter (mm)

Note: alues are presented as means SD (n = 4). Values with different
superscript letters within the same column are significantly different at
p>0.01.

hydroxyl (OH) groups are efficient reactive oxygen species-
scavenging H-donating antioxidants. As a result, they prevent
the radical production process (Quideau et al., 2011).

The correlation between the antioxidant capacity of plant
extracts and their phenolic content was evident from our
findings, where the lower IC50 value, the greater antioxi-
dant activity. According to the findings of this study, M.
piperita seeds extract (70% ethanol) with the highest con-
centration of phenolic compounds (6.3±0.67 mg/g dry seed)
also possess the highest antioxidant capacity and lower Ic50
(0.4±0.02 mg/ml). Antioxidant potential reflects the phe-
nolic and flavonoid contents (Wong et al., 2006; Martins et
al., 2015). Strong scavenging abilities of the M. piperita
and B. oleracea extracts (Table 1) could be attributed to the
conformation structure of phenolic compound. Despite the
fact that phenolic compounds possess large number of OH
groups which are able to reduce DPPH free radicals very
quickly, they can provide the required component as a rad-
ical scavenger (Vadivel et al., 2011). Phenolic compounds
identified in M. piperita (70% ethanol) extract by HPLC
(Table 2) agree with the compounds detected in literatures
(Uchenna et al., 2018; Guneidy et al., 2022). Figure 1 depicts
the ZnO spectrum with a designated maximum absorption
value at 376 nm, which is the typical absorption peak for
wurzite hexagonal pure ZnO (Zak et al., 2011). The fact that
there were no other peaks in the spectrum indicates that the
synthesized compound is only ZnO (Estrada-Urbina et al.,
2018).

From XRD analysis, it could be observed that the intensity
of diffraction peaks was decreased with mint addition indi-
cating the changes in crystallinity and particle size. Hence,
DebyeScherrer and HermansWeidinger methods were used
to determine the crystalline size and crystallinity among the
samples (Anand et al., 2019; Anand et al., 2020; Avinash et
al., 2024). On the bases of θ and full width at half-maximum
(FWHM) of the most intense diffraction peak corresponding
to (101) diffraction planes found at 35.7◦, the crystalline size
of the as-prepared synthesized ZnO NPs were found to be 61
nm in the presence of mint and 167 nm in absence of mint. In
addition, the mint synthesized ZnO NPs showed an obvious
decrease of crystallinity (39.1%) compared to the ones pre-
pared in absence of mint (65.7%). These results indicate that
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the active ingredient of mint extract interact with ZnO NPs
and prevent their over-growth and aggregation in aqueous
environment, thus decreasing the crystalline size of ZnO NP
(Arokiyaraj et al., 2016; Khan et al., 2019).

IC50 value obtained for green synthesized ZnO NPs are
in agreement with that reported by Ananthalakshmi et al.
(2019). In general, the antioxidant capacity increases as the
concentration of NPs increases. To put it another way, more
NPs produced more catalytic surface, which can interact
with free radicals and improve antioxidant property (Jiḿenez-
Rosado et al., 2022). Based on our research, the high total
flavonoid concentration of rutin (3.8 mg/g dry seed) and
syringic acid (5.0 mg/g dry seed) in M. piperita represent the
most impact on its antioxidant ability. Syringic acid’s strong
antioxidant properties are due to the two methoxy moieties
that are connected to the phenolic nucleus at positions 3 and
5 (Karamac et al., 2005; Cheemanapalli et al., 2018). While
the reducing effects of rutin on a variety of oxidizing species,
including superoxide, peroxyl, and hydroxyl radicals reflect
its antioxidant power (Imani et al., 2021).

Moreover, the green synthesized ZnO NPs exhibited a
greater antibacterial capacity against the E. coli strain than
Gentamicin which may be attributed to the capacity of green
synthesized ZnO NPs to destroy bacterial cell wall by pro-
ducing superoxide and hydroxyl radicals as reactive oxygen
species as previously reported (Divya et al., 2013). Interest-
ingly, the small size of ZnO NPs enables them to penetrate
the bacterial cell wall easily, affect DNA formation, cell
growth and thus providing death of bacteria which in turn
will increase antibacterial activity (Kumaresan et al., 2018;
Anand et al., 2024). Indeed, the minimum inhibitory con-
centration (MIC) of green and chemically synthesized ZnO
NPs against E. coli and S. aureus were comparable with that
reported by Reddy et al. (2014) and similar to those esti-
mated by Lakshmi et al. (2012) whereas they found that
chemically synthesized ZnO NPs had the same effect against
some pathogenic bacteria. In like manner, the antibacterial
activity of the green synthesized ZnO NPs Sambucus ebulus
leaf extract, toward E. coli, B. cereus and S. aureus (Alamdari
et al., 2020). Ambika and Sundrarajan (2015) obtained the
same result from the green synthesized ZnO NPs of Vitex
negundo extract toward Gram negative and Gram positive.

Due to flavonoid tendency to inhibit the growth of a vari-
ety of harmful microorganisms, including multidrug resistant
bacteria, flavonoids have also been linked to antibacterial
action (Shamsudin et al., 2022). Rutin, for instance, has been
demonstrated to have a potent antibacterial activity against a
variety of microorganisms (Deepika et al., 2019). According
to Akroum et al. (2010), Gram-negative bacteria were more
greatly affected by quercetin, while apigenin-7-O-glucoside
was more potent toward Gram-positive bacteria. In fact, the
higher content of apigenin-7-O-glucoside (29%) and lower
concentration of quercetin (3.3%) which were identified by
HPLC analysis may explain the slightly stronger antibacterial
action of green synthesized ZnO NPs towards Gram-positive

bacteria. These findings are in agreement with Karaoǧlan
et al. (2023). Indeed, syringic acid play an effective action
toward Gram-negative and Gram-positive bacteria due to
its phenolic skeleton which possesses antimicrobial activ-
ity against several micro-organisms (Cheemanapalli et al.,
2018).

5 Conclusion
In this study, ZnO NPs were successfully synthesized uti-
lizing an aqueous extract from M. piperita seeds, which
displayed intriguing features. The XRD and TEM analy-
ses confirm the formation of ZnO NPs of irregular spherical
structure and an average diameter of 80±36 nm. The green
synthesized ZnO NPs displayed significant antimicrobial po-
tential against both gram positive and gram negative bacteria
that arises from the release of Zn2+ ions and generation of
reactive oxygen species. The superior antimicrobial perfor-
mance of green synthesized ZnO NPs arises from its smaller
particles size compared the chemically prepared one in ad-
dition to the synergetic effect of the phenolic compounds in
the plant extract. The findings of our study showed that the
green synthesized ZnO NPs, as an alternative to chemical
synthesized materials, have promising antibacterial and an-
tioxidant activities. However, additional in vitro cell culture
test against different cell types and in vivo animal model
are advised to offer more accurate and reliable data for a
definitive analysis about their use in clinical wound healing
application.
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