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Abstract: As the main fuel of air transportation, aviation kerosene's safety and performance directly affect flight safety and 

efficiency. In recent years, with the rapid development of aviation industry, the anti-explosion performance and fuel consumption of 

aviation kerosene have attracted more and more attention. Because of its high energy density and flammability, aviation kerosene may 

explode in high temperature and high pressure environment, causing serious safety hazards. Therefore, it is particularly important to 

discuss the anti-explosion performance of aviation kerosene and its influencing factors. In In addition, with the improvement of global 

requirements for sustainable development and environmental protection, airlines urgently need to optimize fuel management, reduce 

fuel consumption, and enhance economic benefits and environmental friendliness. By establishing a scientific fuel consumption 

forecasting model, it can not only provide support for airlines to formulate effective fuel management strategies, but also provide 

theoretical basis and practical guidance for improving the use efficiency of aviation kerosene and ensuring flight safety. Therefore, 

it is of great practical significance and wide application prospect to deeply study the antiknock performance and consumption 

prediction of aviation kerosene. This study focuses on the antiknock performance and consumption prediction of aviation kerosene, 

aiming at improving the safety and economy of aviation fuel. Aviation kerosene is an important energy source for aircraft, and its 

anti-explosion performance is directly related to flight safety. In recent years, with the rapid development of aviation industry, the 

safety of aviation kerosene has been paid more and more attention. The occurrence of knock and explosion may pose a serious 

threat to aviation safety, so it is particularly important to study the anti-explosion performance of aviation kerosene. In addition, the 

efficient prediction of kerosene consumption can help airlines optimize fuel management, reduce operating costs, and then improve 

the economy and sustainability of air transportation. The research results show that the antiknock performance and fuel consumption 

prediction of aviation kerosene are systematically discussed in this study, which provides an important basis for ensuring flight safety 

and improving economic benefits. Firstly, the experimental study shows that the spray pressure, initiation energy and concentration 

equivalent ratio have significant effects on the explosion characteristics of RP-3 aviation kerosene, especially when the spray pressure 

reaches 0.40 MPa, the explosion overpressure and velocity tend to be stable, and the high initiation energy effectively enhances the 

explosion intensity, revealing the key factors of safety assessment. In addition, the study of steam explosion characteristics shows 

that the appropriate concentration and temperature are very important to the safety of aviation kerosene, and the change of ambient 

temperature directly affects the explosion overpressure and reaction rate, indicating that corresponding safety protection measures 

need to be taken in high temperature environment. Aiming at the method regulation of the antiknock performance of aviation 

kerosene, this study puts forward to improve its antiknock performance by improving the processing technology and adding high 

octane number components and antiknock agents, which provides practical support for the safe operation of aviation engines. 

Secondly, the fuel consumption forecasting model based on radial basis function (RBF) neural network shows superior forecasting 

ability, especially in different flight stages, which proves its effectiveness and adaptability in complex tasks. 
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1 Introduction
1.1 Research background and significance
1.1.1 Research Background

(1) Development of the aviation industry

In recent years, the booming aviation industry and the 

booming global tourism industry have jointly promoted 

the steady growth of demand for aviation kerosene, 

and the market size has climbed to new heights year by 

year. Especially in the Chinese market, the demand for 

aviation kerosene is increasing day by day, demonstrating 

strong growth momentum. From a global perspective, 

the delivery of general aviation aircraft has experienced 

a bumpy but generally upward journey between 2019 

and 2023. In particular, in 2020, despite the impact of 

the global COVID-19 pandemic, the delivery of general 

aviation aircraft decreased by 250 aircraft compared 

with the previous year, a decrease of about 9.4% to 

2,408 aircraft, but it recovered rapidly in the following 

years. By 2023, the delivery volume has jumped to 3,050 

aircraft, achieving an annual growth of 8.2%. In addition, 

according to authoritative data from the General Aviation 

Manufacturers Association (GAMA), the number of 

general aviation aircraft in the world continued to grow 

between 2019 and 2020. Although the growth rate has 

slowed down slightly in recent years, the total number 

still maintains an expansion trend, from 454,200 in 2020 

to 456,600 in 2021. It is expected that this number will be 

close to 464,300 by 2023. Entering 2023, China's aviation 

kerosene market has shown strong growth momentum, 

with the market size climbing to about 123.73 billion 

yuan, an annual growth rate of 12.8%, indicating the 

vigorous vitality of the industry. Looking ahead, market 

forecasts show that the market size is expected to expand 

further in 2024, approaching or even exceeding the 

140 billion yuan mark. In addition, according to the 

report "China's Sustainable Aviation Fuel - The Road to 

Carbon Neutrality in the Aviation Industry" (released in 

September 2023), the aviation industry plays a pivotal 

role in the global economy, contributing $3.5 trillion 

to GDP, but its carbon emissions also account for 3% 

of the global total. As the pace of carbon reduction in 

other fields accelerates, it is expected that by 2050, the 

proportion of carbon emissions from the aviation industry 

may increase significantly to 22%. Globally, the aviation 

kerosene market also shows a dual-track trend of recovery 

and growth. Although the COVID-19 pandemic once 

caused a sharp drop in consumption in 2020, since 2021, 

as the pandemic was brought under control, consumption 

has steadily recovered. It is expected that by 2030, the 

global aviation kerosene market will expand to US$37.2 

billion, with an average annual compound growth rate 

of about 5.0%. On the demand side, the civil aviation 

sector is undoubtedly the main force in aviation kerosene 

consumption, accounting for more than 96.3% of the 

domestic market. With the recovery of the global aviation 

industry and the significant increase in passenger flow, the 

demand for aviation kerosene has shown a steady growth 

trend. As an important participant in the kerosene industry, 

China occupies a prominent position in both production 

and consumption, and its supply capacity in the aviation 

kerosene market is particularly outstanding. In recent 

years, China has not only met the growing domestic 

demand, but also actively expanded into the international 

market, with aviation kerosene exports rising year by year. 

Specifically, China's aviation kerosene exports reached 

15.85 million tons in 2023, with an annual growth rate of 

45.3%, further demonstrating its strong export strength. 

In 2024, this growth momentum remains strong, with 

exports reaching 6.39 million tons in the first four months, 

up 35.8% from the same period last year, indicating that 

China's competitiveness in the global aviation kerosene 

market continues to increase.

(2) Combustion performance of aviation kerosene

Aviation kerosene, also known as odorless kerosene, is 

a specific product of petroleum refining, designed to adapt 

to the efficient operation and safety standards of aircraft 

engines. It combines a variety of fractional hydrocarbons, 

including alkanes, aromatics and olefins, which together 

form the basis of aviation fuel. In accordance with the 

GB 6537 standard, a series of functional additives such 

as antistatic agents, antioxidants, lubricity improvers, 

antifreeze agents and metal protectors are allowed to be 

added to the special formula of No. 3 aviation kerosene 
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to improve performance and durability. It is worth noting 

that the formula explicitly excludes tetraethyl lead, a 

common anti-seismic additive in gasoline, because its 

combustion byproducts (such as solid lead monoxide 

and lead) will quickly accumulate inside the engine and 

cause damage to components. With its ideal density, high 

calorific value, excellent combustion efficiency, high 

cleanliness, low sulfur content and slight corrosiveness 

to mechanical parts, aviation kerosene achieves a fast, 

stable and complete combustion process, while meeting 

the liquidity requirements of high-altitude flight in cold 

environments, demonstrating its adaptability and excellent 

performance .

The core performance of aviation kerosene lies in its 

excellent combustion characteristics, which requires it to 

have not only high calorific value, but also to maintain a 

stable combustion state under various working conditions, 

avoid accidental flameout, and ensure rapid restart in 

emergency situations. It is particularly critical that its 

combustion process should be as complete as possible 

to reduce carbon deposits. During the startup phase, the 

characteristics of aviation kerosene such as autoignition 

point, ignition delay time, combustion range, evaporation 

rate and viscosity jointly determine its easy start and 

combustion stability. As for combustion efficiency, it is 

affected by the comprehensive influence of environmental 

parameters such as intake pressure, temperature and 

flight altitude, and is also closely related to the physical 

properties of the fuel such as viscosity, evaporation ability 

and chemical composition. Viscosity directly affects 

the atomization effect of the fuel. Good atomization 

can accelerate the formation of combustible mixture 

and is the key to ensuring stable and safe combustion. 

Therefore, the selection of aviation kerosene with lighter 

fractions and excellent evaporation performance can 

be more effectively mixed with air, thereby improving 

the completeness of combustion. In the ranking of 

the combustion efficiency of hydrocarbon substances, 

normal alkanes show the highest complete combustion 

ability, followed by isoalkanes, monocyclic cycloalkanes, 

bicyclic cycloalkanes, monocyclic aromatic hydrocarbons 

and bicyclic aromatic hydrocarbons. According to the 

GB6537 standard, No. 3 aviation kerosene is carefully 

formulated, and its ingredients are integrated with specific 

additives such as antistatic agents, antioxidants, anti-wear 

agents, antifreeze agents and metal passivators to ensure 

excellent performance. It is particularly noteworthy that 

the kerosene formula strictly excludes tetraethyl lead, a 

commonly used anti-seismic additive in gasoline, because 

the solid lead monoxide and lead deposits generated after 

its combustion pose a serious threat to engine parts. No. 

3 aviation kerosene is known for its suitable density, 

high calorific value, excellent combustion stability, 

high cleanliness, low sulfur content and low corrosion 

to mechanical parts. It can not only achieve fast, stable 

and complete combustion, but also perfectly meets the 

stringent requirements for oil fluidity in severe cold 

environments and high-altitude flight conditions.

The stability assessment of aviation kerosene covers 

two aspects: storage stability and thermal stability. During 

storage, its key performance indicators such as gum 

content, acidity and color are prone to change. These 

changes are mainly due to the trace unstable components 

contained in the kerosene, such as olefins, aromatic 

hydrocarbons with unsaturated side chain structures 

and non-hydrocarbon compounds. These components 

gradually act over time, causing gum accumulation and 

acidity to rise. It is worth noting that the temperature 

of the storage environment is one of the key factors 

affecting the quality changes of kerosene, and it is crucial 

to maintain the quality of kerosene. When the aircraft 

soars into the sky, the heat caused by air friction causes 

the temperature of the kerosene in the fuselage and the 

fuel tank to rise sharply, which may exceed 100°C. This 

requires that aviation kerosene must have excellent 

thermal stability to meet the challenges under extreme 

flight conditions.

(3) Aviation kerosene consumption

By 2023, the aviation industry will account for about 

2.0% of the global carbon emissions, equivalent to about 

800 million tons of carbon dioxide equivalent, indicating 

the significance of its impact on the environment. It is 

expected that by 2025, the industry will return to the pre-

epidemic level in 2019, with annual carbon emissions of 
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up to 1.06 billion tons. However, with the acceleration of 

the electrification of ground transportation, the aviation 

industry may face severe challenges in the coming decades 

with an increasing share of carbon emissions, which will 

pose an obstacle to achieving the global carbon neutrality 

goal in 2050. In contrast, in 2020 during the epidemic, 

global aviation kerosene consumption suffered a heavy 

blow, shrinking sharply to 4.708 million barrels per day, 

a year-on-year plunge of 41%. According to the "2024-

2029 China Aviation Kerosene Industry Operation Status 

and Investment Prospects Survey and Research Report", 

as the shadow of the epidemic gradually dissipates, global 

aviation kerosene demand has begun to steadily recover 

since 2021, marking a sign of industry recovery . Entering 

2023, although the global demand for aviation kerosene 

has shown a warming trend, its actual consumption is 

still hovering below the pre-epidemic level, with the gap 

remaining at about 10%. Focusing on the Asia-Pacific 

region, the recovery momentum of aviation kerosene 

consumption is particularly strong, especially in the 

Chinese market, where daily consumption has jumped 

to 800,000 barrels. This figure not only far exceeds the 

downturn in 2020, but is also close to the prosperity of 

2019, showing a strong recovery momentum. In contrast, 

the European and American markets, as representatives of 

developed economies, have a relatively advanced pace of 

recovery in the aviation industry, and aviation kerosene 

consumption has basically returned to the level before 

the outbreak of the epidemic, showing a relatively stable 

recovery trend.

With the rapid development of the aerospace industry, 

aviation kerosene, as an important fuel, has received 

increasing attention for its explosion resistance and 

energy consumption. This project plans to systematically 

study the combustion performance of aviation kerosene, 

and explore the various factors affecting it during the 

combustion process through experiments to identify 

potential safety risks. On this basis, the fuel consumption 

evaluation method based on deep network and RBF 

network is studied to provide scientific basis for 

enterprises to help them manage fuel and reduce operating 

costs. The results of this project will help improve the 

safety and economy of China's aviation fuel and promote 

the sustainable development of China's aviation industry. 

Against the background of the growing global demand for 

aviation kerosene, it is particularly important to ensure 

its safe and efficient use. Therefore, the research of this 

project has important practical significance for improving 

the explosion resistance of aviation kerosene and reducing 

energy consumption.

1.1.2 Research significance
(1) Theoretical significance

Against the backdrop of the booming aviation 

industry, research on the anti-knock performance and 

consumption prediction of aviation kerosene is particularly 

urgent, stemming from the high attention paid to the dual 

characteristics of aviation fuel: ensuring flight safety 

while taking into account economic benefits. Detonation 

is a major hidden danger to flight safety, and its potential 

threat cannot be ignored. Once it occurs, it not only 

endangers the lives of passengers and crew members, but 

may also cause huge economic losses and social unrest. 

Therefore, in-depth analysis of the combustion stability of 

aviation kerosene and its influencing factors has become 

a key link in improving the level of aviation safety. At 

the same time, with the continuous breakthroughs in deep 

learning and machine learning technologies in the field 

of artificial intelligence, fuel consumption prediction 

technology has achieved a qualitative leap, providing 

airlines with more accurate and efficient fuel management 

solutions. These technological innovations not only 

optimize the allocation of fuel resources, but also promote 

the green and sustainable development of the aviation 

industry, forming a deep theoretical foundation for this 

study.

In order to improve the explosion resistance and fuel 

economy of aviation kerosene, a scientific basis needs 

to be provided. At present, in the field of aerospace fuel 

safety, the research on explosion resistance is relatively 

weak and the theoretical system is still imperfect. In this 

context, a systematic analysis of the combustion behavior 

and influencing factors of aviation kerosene during 

combustion is carried out to lay the foundation for its 

safety assessment and practical application. In addition, 
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the experimental scheme and data processing technology 

adopted in this project, especially the fuel consumption 

prediction technology based on RBF network, will 

provide important theoretical support for China's aviation 

fuel research. Through theoretical research, the explosion 

resistance characteristics of aviation fuel are revealed, and 

the intrinsic relationship between it and fuel consumption 

is explored, so as to establish a more complete aviation 

fuel safety and economic calculation model, laying the 

foundation for further related research.

(2) Practical significance

As the aviation industry is booming, the dual 

challenges of safety and economy are becoming 

increasingly severe. The research focus of aviation 

kerosene has naturally turned to its anti-explosion 

performance and consumption prediction. With the rapid 

recovery of global air traffic, the demand for aviation 

kerosene has surged, but its potential explosion risk has 

also become the focus of industry attention. The fuel 

deflagration problems exposed in many aviation accidents 

have prompted the aviation industry to conduct in-depth 

research on the anti-explosion ability of kerosene. At 

the same time, given the significant impact of fuel costs 

on the profitability of airlines, accurately predicting fuel 

consumption has become the key to optimizing operations 

and reducing costs. Therefore, combining experimental 

verification and model construction, a systematic study 

of the anti-explosion characteristics and consumption 

patterns of aviation kerosene aims to provide strong 

support for the win-win situation of safe flight and 

economic benefits in the aviation industry .

In practical applications, improving the fuel 

management level and operational efficiency of enterprises 

has important practical significance. With the rapid 

development of the aviation industry, the demand for 

aviation kerosene continues to grow, so it has become a 

pressing issue to reasonably predict fuel consumption and 

reduce operating costs. By establishing an effective fuel 

consumption prediction model, enterprises can estimate 

fuel demand more accurately, thereby optimizing fuel 

procurement and use. The research results of this project 

will provide a solid foundation for the development and 

application of aviation kerosene in the aerospace field and 

promote the development of my country's aerospace fuel 

technology. In addition, the research of this project is of 

great significance to improving the economy and safety of 

aviation fuel.

(3) Social significance

At a time when global environmental protection and 

sustainable development issues are becoming increasingly 

prominent, the study of the anti-explosion performance 

and consumption prediction of aviation kerosene is 

particularly important. In view of the severe challenges of 

climate change and the urgency of environmental issues, 

the public's attention is focused on the aviation industry, 

expressing deep concern about its carbon emissions and its 

potential threat to the natural ecology. As one of the main 

contributors to greenhouse gas emissions, the aviation 

industry is under unprecedented pressure to reduce 

emissions and urgently needs to explore and implement 

innovative strategies to reduce its environmental footprint. 

In addition, the frequent occurrence of aviation safety 

incidents, especially fuel-related accidents, has prompted 

society to place high hopes on the safety standards of 

aviation kerosene. In this context, strengthening the in-

depth exploration of the anti-explosion performance 

of aviation kerosene and the accurate prediction of 

consumption is not only the key to improving aviation 

flight safety, but also an important way to promote the 

transformation of the aviation industry to a low-carbon 

and high-efficiency one and to help implement the global 

sustainable development strategy.

From the broad perspective of social welfare, 

exploring the anti-explosion potential and consumption 

estimation of aviation kerosene is of immeasurable value 

in building a strong line of defense for aviation safety. 

With the daily routine of air travel, the public's demand 

for flight safety has become more urgent. The risk of 

explosion is not only directly related to the life safety of 

passengers and crew members, but its potential social 

chain reaction cannot be ignored. This study aims to lay a 

solid scientific foundation for aviation safety management 

agencies and help build a more rigorous regulatory 

framework and operating specifications by carefully 
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analyzing the anti-explosion characteristics of aviation 

kerosene. At the same time, accurate prediction of fuel 

consumption can not only optimize the operating strategy 

of airlines and cut unnecessary expenses, but also actively 

respond to the call for environmental protection, paving 

the way for the aviation industry to transform to a low-

carbon and sustainable development model . This process 

not only enriches the theory of aviation technology, but 

also promotes the society's deep understanding of the 

dual attributes of green and safety in the aviation field in 

practice .

1.2 Literature review
1.2.1 Research on aviation kerosene

Jet fuel is the main fuel for most aircrafts at 

present because of its high energy density. However, 

if spontaneous combustion or explosion occurs in the 

engine, the consequences will be very serious. In addition, 

since there are many factors on the aircraft that may 

release energy such as electric sparks, under certain 

conditions, these energies can easily exceed the minimum 

ignition energy, thus causing the explosion of jet fuel and 

causing safety accidents. Therefore, many researchers at 

home and abroad have conducted in-depth research on the 

physical and chemical properties and ignition performance 

of jet fuel.

Bayindir et al. deeply explored the heat transfer 

characteristics of aviation kerosene in small pipes 

under supercritical conditions. Through comprehensive 

experiments and numerical simulations, they revealed 

the positive promotion effect of mass flow rate and inlet 

temperature on the heat transfer coefficient, while the 

influence of pressure factors was negligible. In addition, 

they proposed that by adjusting the strategy of reducing 

heat flux input and lowering inlet temperature, the quality 

degradation phenomenon in the heat transfer process can 

be significantly suppressed (Bayindir, 2017). At the same 

time, Kim evaluated the potential of aviation kerosene 

as a diesel alternative fuel through a series of bench tests 

and verified its feasibility in practical applications (Kim, 

2017). On the other hand, Perkowski focused on the 

ignition characteristics of aviation kerosene in a shock 

tube environment, and carefully analyzed the complex 

relationship between ignition delay and temperature, 

pressure, and concentration, providing data support for 

the precise control of the ignition process (Perkowski, 

2024). Valco turned to the study of the supercritical 

evaporation behavior of RP-3 aviation kerosene droplets, 

explaining how ambient temperature and pressure, as 

dominant factors, shape the unique pattern of droplet 

evaporation under different working conditions, and 

especially pointed out the significant influence of 

temperature range on evaporation characteristics (Valco, 

2017). Saraee 's research was carried out in a flow mixer. 

Through a detailed analysis of kerosene combustion 

products, a mathematical model reflecting the combustion 

dynamics of aviation kerosene was constructed, laying 

the foundation for the simulation and optimization of the 

combustion process (Saraee, 2024). Ning (2019) deeply 

explored the behavioral characteristics of JP-10 aviation 

kerosene and air mixtures in a closed 20-liter explosion 

ball, focusing on the significant effects of different 

particle sizes and concentration conditions on explosion 

temperature, pressure and lower limit. At the same time, 

Ilbas (2021) turned the research perspective to aviation 

kerosene pool fires in an open environment, and analyzed 

in detail the complex relationship between thermal 

radiation, heat transfer characteristics, and combustion rate 

and wind speed, revealing the specific regulatory effect of 

oil pool diameter on combustion rate, and explaining how 

wind speed changes affect the combustion efficiency of oil 

pools of different sizes. On the other hand, Idrisov (2020) 

focused on the thermophysical properties of RP-3 aviation 

kerosene, and systematically summarized its main 

thermophysical properties by constructing an optimization 

strategy for alternative fuels. In the study of Marszaek et 

al. (2019), advanced numerical simulation technology was 

used to conduct a detailed analysis of the flow and heat 

transfer of RP-3 kerosene under supercritical pressure in 

a horizontal circular tube. The RNG k-ε turbulence model 

and the Wolfstein equation model were used to reveal the 

secondary flow phenomenon induced by the buoyancy 

of the fuel, and its enhancement effect on the turbulence 

intensity and convective heat transfer on the lower wall of 

the circular tube. In a study published in Energy magazine 
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(2017), scientists deeply explored the heat transfer 

mechanism of aviation kerosene under supercritical 

pressure conditions and accurately simulated its 

thermodynamic properties through numerical modeling. 

Compared with experimental data, the model showed a 

high degree of prediction ability for the fuel boundary 

temperature, and the error was accurately controlled 

within 5%, verifying the effectiveness and accuracy of the 

model. 

In the vast field of international aviation kerosene 

research, foreign experts have comprehensively 

analyzed the efficiency, application practices and safety 

performance of the fuel, with a particular focus on its 

chemical composition, combustion behavior and in-

depth evaluation of environmental compatibility. Feser 

's uniqueness lies in his meticulous exploration of the 

relationship between aviation kerosene combustion 

efficiency and emission characteristics. Through a series 

of carefully designed experiments, he revealed the 

excellent combustion stability and emission reduction 

advantages of high-quality kerosene in high-altitude 

working environments, thus highlighting fuel purity as a 

key factor in improving engine efficiency (Feser, 2020). 

On the other hand, Kannaiyan focused on improving the 

anti-knock ability of kerosene. Through in-depth research 

on the effectiveness of additives (such as antistatic and 

antioxidant ingredients), he successfully demonstrated 

that these additives have a significant effect on enhancing 

the anti-knock performance of kerosene under extreme 

conditions, which not only enhances flight safety, but 

also proposes an optimization strategy for additive ratios 

through simulation tests, which points out the direction 

for further improving the performance of aviation 

kerosene (Kannaiyan, 2020). Berger's in-depth research 

focuses on the profound impact of aviation kerosene on 

the environment. He clearly pointed out that the carbon 

dioxide and greenhouse gases released by the combustion 

of aviation kerosene in the aviation industry are 

significantly exacerbating global warming. To this end, 

he called on the aviation industry to vigorously develop 

sustainable aviation fuel technology, aiming to reduce 

dependence on traditional aviation kerosene, thereby 

accelerating progress towards carbon neutrality. (Berger, 

2021) Kreyer examined aviation kerosene from a market 

and economic perspective, predicting that its consumption 

will continue to grow as demand for air transportation 

increases. By building a sophisticated data model, he 

looked forward to the future size of the aviation kerosene 

market and emphasized that improving fuel efficiency 

and reducing operating costs will be key strategies to 

meet the dual challenges of surging market demand and 

increasingly stringent environmental regulations .

1.2.2 Research on the anti-explosion performance 
of aviation kerosene

 The explosion process of liquid fuel is unique, 

combining some commonalities between gas and 

dust explosions, while also showing its own unique 

complexity. This process begins with the rapid dynamic 

response of fuel droplets at the front of the explosion 

shock wave, including acceleration, deformation, rapid 

evaporation, and efficient heat transfer, which are closely 

intertwined physical phenomena. Subsequently, the 

premixed combustion of the gaseous fuel and the diffusion 

combustion of the liquid droplets occur in parallel, 

forming a unique combustion mode. Therefore, the 

explosion evolution path of the flammable liquid cloud, 

with its unique physical and chemical mechanisms, shows 

significantly different characteristics from other types of 

explosions.

Kumar pioneered the construction of a chemical 

reaction kinetic model framework for liquid fuel cloud 

explosions, which has the ability to predict key parameters 

such as the critical detonation energy of cloud gas phase 

detonation (Kumar, 2018). On the other hand, Yelugoti 

explored the linkage effect of cloud diameter and velocity 

through mathematical modeling, revealing that when 

the cloud is refined to half of its original diameter, the 

concentration of particulate matter in the combustion 

chamber can be significantly reduced by about 60%, 

significantly optimizing the combustion environment 

(Yelugoti, 2023). Gawron used high-precision digital 

imaging technology to systematically analyze the 

changing laws of different fuel spray characteristics, 

pointing out that the increase in the proportion of 
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biodiesel causes the viscosity of the mixture droplets to 

increase simultaneously with the Sauter average diameter, 

and the reduction of the spray cone angle promotes the 

uniformity of fuel atomization (Gawron, 2020). Safieddin 

's research focused on the atomization characteristics of 

oxygenated biofuel and RP-3 aviation kerosene mixed 

fuel. Through comparative experiments, it was found that 

the atomization efficiency of the mixed fuel increased 

with the decrease of the proportion of oxygenated 

biofuel, and different biofuel components showed more 

similar atomization parameter characteristics under the 

condition of increasing fuel supply pressure difference 

(Safieddin, 2022). In Nagarajan's research, he focused on 

the performance of aviation kerosene in the spray pressure 

range of 0.16 to 1.2 MPa, revealing how the increase in 

spray pressure directly led to the increase in nozzle fuel 

flow per unit time, and thus affected the shape of the spray 

cone angle (Nagarajan, 2017). In contrast, Colket used the 

steam cloud generation equipment designed by Wilson 

to deeply explore the behavior of alcohol and octane 

fuel droplets, steam and air mixtures, the Sauter average 

diameter of these droplets spanning from 4 microns to 

30 microns. The study found that the flame propagation 

speed of this heterogeneous mixture is significantly faster 

than the performance of the corresponding fuel in a pure 

gas-phase air mixture (Colket, 2017). On the other hand, 

Nihasigaye 's work generated droplets with a Sauter 

average diameter of 30 to 100 microns by regulating the 

degree of kerosene atomization, and evaluated its ignition 

characteristics with the help of an electric spark ignition 

device. The experimental data clearly pointed out that 

the fuel droplet size is a key factor affecting the ignition 

energy requirement (Nihasigaye, 2021). Shreekala has 

extensively studied the explosion properties of liquid 

fuels including No. 93 gasoline and various military 

diesels. Not only did he determine their basic physical 

and chemical properties and atomization behavior, he 

also conducted combustion and explosion experiments 

in confined and unconstrained environments, and 

comprehensively analyzed the explosion characteristics of 

these fuels (Shreekala, 2019).

1.2.3 Research on the regulation of anti-explosion 

performance of aviation kerosene
The explosion phenomenon of liquid fuel, due to its 

unique coexistence of gas and liquid phases, not only 

shows dynamic characteristics similar to gas explosion and 

dust explosion, but also contains significant differences. 

Its core feature is that the triggering of the explosion 

begins with a series of complex physical processes such 

as rapid acceleration, morphological changes, evaporation 

and rapid transfer of heat energy of fuel droplets at the 

front of the shock wave, followed by oxidation reactions 

in the gas phase. This process is a unique phenomenon of 

interweaving gas phase premixed combustion and droplet 

surface diffusion combustion, which gives the flammable 

liquid cloud explosion a unique development trajectory.

In Ardebili 's wedge shock tube experiment, the 

detonation characteristics of liquid fuel droplets were 

studied in depth. The study revealed that low-volatility 

fuels such as decane and kerosene exhibited an extended 

reaction zone, and the measured detonation velocity 

was much lower than the theoretically calculated gas 

detonation CJ velocity benchmark. On the contrary, for 

highly volatile fuels such as n-heptane, the experimentally 

measured detonation velocity showed good consistency 

with the theoretical CJ value (Ardebili, 2022). Another 

study led by Balli used spark ignition technology 

to trigger the combustion of liquid fuel clouds in a 

horizontal multiphase explosion tube, and examined 

in detail the transition process from deflagration to 

detonation, especially at a fuel concentration of 515g/

m³, obtaining key overpressure and explosion velocity 

data (Balli, 2021). Woodroffe conducted systematic 

experiments on the detonation parameters of propylene 

oxide clouds in a vertical shock tube environment and 

found that with the increase of fuel equivalence ratio, 

the explosion overpressure rose sharply in the small 

equivalence ratio range, but tended to be flat in the large 

equivalence ratio range (Woorroffe, 2022). In addition, 

Gawron used a large horizontal multiphase combustion 

explosion device combined with high-pressure spray 

technology to conduct detailed experiments on the DDT 

(deflagration to detonation) process of three fuels such 

as nitromethane, which not only revealed the unique 
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combustion and explosion characteristics of each 

fuel, but also clarified their combustion and explosion 

performance laws with the change of equivalence ratio, 

and summarized the macroscopic behavior pattern of the 

DDT process (Gawron, 2020). Ekici 's research deeply 

explored the transformation mechanism of deflagration to 

detonation of propylene oxide and ether clouds under mild 

ignition conditions through a multiphase combustion and 

explosion experimental system. The experiment revealed 

that when the concentration of propylene oxide reached 

355g/m³, the end of the pipe could spontaneously maintain 

the detonation phenomenon; and when the concentration 

increased to 631g/m³, the overpressure generated by the 

explosion reached its peak. Similarly, ether mist also 

showed self-sustaining detonation capabilities at a mass 

concentration of 295g/m³, and its critical detonation 

concentration was measured to be 229g/m³ (Ekici, 2017). 

In another independent study conducted by Ardebili, he 

used a large detonation tube platform to focus on the 

analysis of the explosion behavior of propylene oxide and 

found that the critical detonation energy of hydrocarbon 

fuels showed a trend of first decreasing and then 

increasing with concentration, and the lowest point of this 

trend tended to the fuel-rich side (Ardebili, 2022).

At present, the research on the combustion and 

explosion performance of liquid fuels at home and abroad 

mainly focuses on hydrocarbon fuels, gasoline and diesel, 

while the research on the combustion performance of other 

liquid fuels is not systematic and comprehensive enough, 

and the relevant data is also relatively scarce. Therefore, 

the research of this project is of great significance.

1.2.4 Research on the prediction of aviation 
kerosene consumption

In recent years, the proportion of fuel consumption 

in the overall operating expenses of airlines has 

continued to rise, reaching about 27.3% in 2019, a surge 

of 4.7 percentage points from the previous year. This 

trend highlights the urgency of fuel cost management, 

especially in the context of global oil price fluctuations 

and the natural decline of aircraft performance over 

time. Improving fuel efficiency has become the key for 

airlines to control costs and enhance competitiveness. 

Therefore, accurate monitoring and forward-looking 

prediction of fuel consumption for specific flight missions 

can not only effectively reduce operating costs, but also 

significantly improve the overall efficiency of flight 

operations, laying a solid foundation for the sustainable 

development of the aviation industry . In the aviation 

industry, which pursues more efficient operations 

and cost control, accurate prediction of aircraft fuel 

consumption has become a core element in formulating 

flight and fuel strategies. Traditionally, this task relies on 

precise engineering calculations, which are based on the 

principle of conservation of energy, and analyze in detail 

the conversion of kinetic energy and potential energy 

throughout the flight, and then estimate the amount of 

fuel consumed to overcome factors such as air resistance. 

However, with the leap forward of intelligent technology, 

the aviation industry is actively embracing emerging 

algorithms such as machine learning. They not only 

provide a variety of model options for fuel forecasting, 

but also effectively avoid the prediction bias that may be 

caused by a single method through continuous iterative 

optimization, and tailor more accurate and flexible flight 

and fuel management solutions for airlines, helping to 

effectively control costs .

In the field of aircraft fuel consumption prediction, 

Balaji's research used basic multivariate linear regression 

and random forest algorithms. Although the model was 

simple, it did not fully consider the complexity of the 

interaction between flight and engine and the potential 

nonlinear relationship (Balaji, 2022). In contrast, 

Razek built a model based on the principle of energy 

conservation. Its uniqueness lies in the solid physical 

foundation, but the challenge lies in the difficulty of 

obtaining model parameters and the failure to fully 

incorporate the impact of meteorological changes and 

aircraft "fuel consumption" on fuel efficiency (Razek, 

2017). Yucer took a different approach and used trajectory 

pattern recognition technology for estimation. Although 

this method is suitable for preliminary evaluation, it is 

still limited in accurate prediction (Yucer, 2023). As for 

Boomadevi, she built a fuel consumption model based on 

the flight dynamics equation. Although it demonstrated 
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the application potential of dynamic analysis, further 

efforts are still needed to improve the prediction accuracy 

(Boomadevi, 2021).

In Sobhani 's research, the introduction of the 

ARIMA model (autoregressive integrated moving average 

model) opened up a new perspective for the analysis 

of historical data on aviation kerosene consumption, 

revealing the profound impact of seasonal fluctuations 

on consumption. By carefully mining historical data, the 

study successfully demonstrated how to accurately predict 

future consumption trends, providing strong support for 

airlines' operational strategy planning (Sobhani, 2020). In 

contrast, Puduppakkam explored the potential of machine 

learning in the field of aviation kerosene consumption 

prediction. She cleverly used algorithms such as random 

forests and SVMs, combined with multidimensional 

data (such as flight frequency, passenger volume and 

fuel costs), to build an efficient prediction model. 

This innovative method has demonstrated excellent 

ability in handling complex nonlinear relationships and 

significantly improved prediction accuracy. Compared 

with traditional statistical methods, its advantages are 

self-evident (Puduppakkam, 2024). Suchocki 's research 

took a different approach. By constructing a multi-factor 

regression model, it deeply analyzed the combined impact 

of various factors, including economic indicators, oil 

price fluctuations, and route layout changes, on aviation 

kerosene consumption, revealing the positive correlation 

between economic growth and kerosene consumption, 

and providing policymakers with important economic 

factors that must be considered when formulating fuel 

management policies (Suchoki, 2023). Baral explored 

the potential of the dynamic system model framework 

in predicting aviation kerosene consumption. From the 

perspective of system dynamics, she carefully constructed 

a simulation environment that reveals how the complex 

interactions between multiple factors in the aviation 

industry work together to affect fuel consumption. The 

ingenuity of this model lies in its ability to gain insight 

into the feedback loop within the system, providing 

decision makers with a clear theoretical perspective, 

emphasizing the inseparability between sustainable 

development of the aviation industry and fuel management 

efficiency, and laying a solid foundation for future policy 

guidance. (Based on Baral, 2021).

At present, international research on aviation 

kerosene consumption mainly focuses on time series 

analysis, machine learning, multi-factor regression and 

dynamic models. The research results of this project will 

help improve the development level of my country's civil 

aviation transportation industry and provide a scientific 

basis for my country's civil aviation management 

departments to formulate more effective response 

strategies and management measures when dealing with 

emergencies.

1.3 Research content and methods
1.3.1 Research content

This paper takes the anti-explosion performance 

of aviation kerosene and its consumption prediction 

as the main research objects. By analyzing the current 

development status of the global aviation industry, it 

explores the application prospects and safety of aviation 

kerosene.

This article is divided into five parts. First, in the first 

chapter, the development status of my country's aviation 

kerosene industry is summarized and analyzed, and the 

future development trend is discussed. Especially in the 

Chinese market, the demand for aviation kerosene is 

increasing year by year, and it is expected to maintain a 

rapid development trend in the next few years. How to 

ensure the safe and effective use of aviation kerosene will 

be an important direction for future research.

Chapter 2 mainly introduces the basic properties 

of aviation kerosene and conducts an in-depth study 

of its composition and combustion characteristics. 

Aviation kerosene is a hydrocarbon containing multiple 

components, and its excellent combustion performance is 

crucial to the safe operation of aircraft. Based on this, this 

chapter explores the effects of factors such as viscosity, 

volatility and chemical composition on combustion 

stability and completeness. In addition, combined with the 

current research status of my country's aerospace field, 

this project also focuses on analyzing the performance 

of aviation kerosene in extreme environments such as 
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plateaus and severe weather, aiming to provide a scientific 

basis for improving the safety of my country's aerospace.

Chapter 3 details the current status of aviation 

kerosene use in my country, and focuses on international 

development trends and the environmental impacts they 

bring. Although global aviation kerosene consumption 

has dropped significantly due to the influenza epidemic in 

2020, demand is gradually recovering with the recovery 

of the aviation industry. In addition, this chapter also 

analyzes the main problems faced by my country's civil 

aviation development in the global carbon neutrality 

goal, and proposes countermeasures to promote the 

development of the aviation industry. By comparing the 

oil consumption in various regions, the current trend and 

future development direction of my country's aviation 

kerosene market are obtained.

Chapter 4 studies the anti-explosion performance of 

aviation kerosene, and analyzes its deflagration behavior 

and influencing factors based on experimental results. On 

this basis, the safety of aviation kerosene under different 

working conditions, especially its performance under high 

temperature and high pressure environments, is further 

explored. The study found that the chemical composition, 

storage conditions, and combustion conditions of aviation 

kerosene are closely related to its anti-explosion ability. 

This study has laid a foundation for the safe production 

of China's civil aviation and the formulation and 

implementation of relevant policies, and at the same time 

highlights the importance of improving the safety level of 

aviation kerosene in China.

Chapter 5 summarizes the research results of this 

paper and proposes a new method for predicting aircraft 

fuel consumption. On this basis, by using technologies 

such as deep networks and RBF networks, a fuel 

consumption evaluation system based on RBF networks is 

constructed to help airlines better manage fuel and reduce 

operating costs. In addition, the practical application 

of the system is discussed in depth, and strategies for 

achieving sustainable development in China's civil 

aviation industry are proposed to improve the safety and 

economy of air transportation. These research results 

have important theoretical significance and application 

value for promoting the development of China's aviation 

kerosene and promoting the green transformation of the 

aviation and aerospace industry.

1.3.2 Research Methods
Literature method, by analyzing the current status of 

aviation kerosene market at home and abroad, explored 

the current situation of aviation kerosene market in my 

country and provided reference for its development. 

Then, using existing research methods, comprehensively 

understand the chemical properties,  combustion 

characteristics and safety of aviation kerosene, and make 

a reasonable evaluation to grasp the key factors of its 

anti-explosion performance. In addition, by analyzing 

the cutting-edge research methods in related fields at 

home and abroad, it helps researchers predict energy 

consumption and lays the foundation for establishing 

an efficient energy consumption prediction model. This 

project aims to deepen the understanding of the subject 

by combing through relevant research results at home 

and abroad, and lay a solid foundation for subsequent 

experimental design and data analysis to ensure the 

accuracy and scientificity of the research results.

Experimental method. On the basis of the existing 

research, this project will adjust the experimental 

conditions to comprehensively measure the deflagration 

characteristics of aviation kerosene and explore the 

main factors affecting its combustion performance. The 

research content mainly includes quantitative analysis 

of combustion characteristics, start-up and stability 

to ensure the accuracy and reliability of experimental 

data. In addition, the project will also use numerical 

calculation methods to analyze the impact of parameters 

such as temperature and pressure on engine performance 

and reveal the actual performance of aviation kerosene 

in the engine. The established model will be tested 

by experimental methods, and the test results will be 

compared with the actual data to improve the accuracy of 

the algorithm. Through the implementation of this project, 

the relevant research content will be further enriched, and 

the foundation will be laid for the use of aviation kerosene 

in engineering applications, which will promote the 

improvement of the safety and economy of my country's 
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aviation kerosene industry.

Logical analysis method. The rational method was 

used to conduct the research. Based on the existing data 

and literature, the main factors affecting its anti-explosion 

performance were analyzed from the aspects of chemical 

composition, additive type and combustion conditions. 

At the same time, the logical analysis method helped to 

clarify the relationship between the consumption trend 

of aviation kerosene and the development of the aviation 

industry, and explored the impact of multiple factors such 

as market demand, technological progress and policies 

and regulations on aviation kerosene consumption. 

Through these studies, this paper constructed a complete 

theoretical framework to better understand and explain the 

behavior of aviation kerosene in different scenarios.

1.4 Research innovations
This project has made significant innovations in the 

anti-explosion performance and energy consumption 

prediction of aviation kerosene. Current research mainly 

focuses on the basic combustion performance of kerosene, 

but there is limited understanding of its anti-explosion 

mechanism under complex conditions. This project plans 

to use a combination of experimental and theoretical 

methods to reveal the influence of material composition 

and additives on anti-explosion performance to fill the 

research gap in this field. On this basis, by introducing 

new variables such as air transportation modes and 

seasonal fluctuations, the prediction accuracy of aviation 

fuel consumption can be improved. This project not 

only enhances the practical application value of research 

results, but also opens up new directions for subsequent 

research.

Secondly, from a research perspective, the anti-

explosion characteristics and fuel consumption of aviation 

kerosene are combined to build a complete research 

system. Past studies often discussed the two separately 

and failed to effectively reveal the intrinsic connection 

between them. By deeply studying the combustion 

characteristics of aviation kerosene during use and 

exploring its relationship with combustion efficiency, 

we can enhance our understanding of it from a new 

perspective, thereby providing a solid theoretical basis 

for the safe and economic operation of aviation kerosene. 

In addition, the project also fully considers the impact 

of external environmental factors (such as weather and 

market changes) on aviation kerosene consumption, 

enhancing the practical application value of the research 

results. This research will open up a new path for the 

study of diversification issues in my country's civil 

aviation industry.

Finally, in terms of research methods, the project 

innovatively combined deep learning with RBF neural 

networks to build a consumption prediction model. 

Compared with traditional statistical analysis methods, the 

new machine learning algorithm based on neural networks 

proposed in this project can better handle the nonlinear 

and complex relationships between multiple variables, and 

further improve the accuracy and real-time performance 

of the model. During the experiment, the practicality 

and feasibility of the experiment were fully considered, 

and verified with actual data to ensure the reliability and 

practicality of the research results. This research is not 

only of great significance in theory, but also has high 

value in practical applications.

2 Overview of Anti-
knock Performance and 
Consumption Prediction of 
Aviation Kerosene Fuel
2.1 Overview of the anti-explosion performance of 
aviation kerosene
2.1.1 Causes of detonation

Under natural conditions, explosion is a common 

physical phenomenon. In a broad sense, explosion refers 

to a substance that undergoes physical or chemical 

changes and instantly transforms into another form, 

releasing a large amount of energy, accompanied by a 

loud noise. Usually, in the early stage of the explosion, 

the kinetic energy of the explosive material is converted 

into high compression energy; in the second stage, 

this compression energy expands outward rapidly and 



49

Advances in Material Science·Volume 7·Issue 1·2023  DOI: http://doi.org/10.26789/AMS.v7i1.007

does work externally during the expansion process. 

Therefore, when an explosion occurs, the energy inside 

the explosive is quickly converted into mechanical 

energy of the explosive itself, the explosion products, and 

the surrounding medium, and produces sound through 

vibration.

Explosion involves two aspects: physics and 

chemistry. According to the different ways of occurrence, 

explosion can be divided into three types: physical 

explosion, chemical explosion and nuclear explosion.

In physics, an explosion refers to a phenomenon 

caused by a sudden change in conditions and stress. 

Although the process of physical explosion occurs, its 

essence remains unchanged, and the composition before 

and after the explosion remains the same.

A nuclear explosion is an explosion caused by the 

huge energy generated by nuclear fission or nuclear 

fusion. Once it occurs, the surrounding temperature 

will soar to tens of millions of degrees Celsius, and the 

pressure at the core can be equivalent to tens of thousands 

to tens of millions of tons of TNT.

In fact, in a broad sense, "explosion" can be regarded 

as a "chemical" phenomenon. Chemical explosion is a 

process in which the chemical energy inside a substance 

is rapidly released in a very short period of time through 

a chemical reaction, and it is converted into heat to form 

a high-temperature and high-pressure detonator, thereby 

performing work on the outside.

The explosion reaction of aviation kerosene has three 

basic characteristics, just like general chemical explosions: 

fast reaction speed, strong heat release and the generation 

of gaseous products. These characteristics are necessary 

conditions for ordinary chemical reactions to evolve into 

explosion reactions. Speed means achieving maximum 

power with very little energy in a very small space, and 

the gas generated by the reaction is the working medium 

for energy conversion.

The core  difference between explosion and 

combustion is significantly reflected in their reaction 

rates. Taking energy release as an example, although each 

kilogram of coal can release up to 9200KJ of heat during 

combustion, this process often takes several minutes to 

complete step by step; in contrast, when the same mass 

of nitroglycerin explodes, although the heat released 

is slightly lower, about 6300KJ, its reaction can erupt 

instantly within microseconds. It is this huge difference 

in speed that leads to the fundamental difference in the 

energy release effect of the two. During combustion, 

due to the slow reaction speed, the large amount of gas 

produced has enough time to diffuse and cannot form a 

high-pressure environment; while in explosions, due to 

the extremely fast reaction, the gas products accumulate 

rapidly, forming high pressure and accompanied by a 

strong shock wave. This constitutes a difference between 

combustion and explosion that cannot be ignored.

 One of the core elements of explosive chemical 

reactions is their exothermic properties. This property is 

not only the key driving force for the chain explosion to 

continue, but also because without heat generation, the 

energy of the previous explosion wave cannot effectively 

trigger the explosion of subsequent materials, resulting in 

the interruption of the reaction chain. In addition, the heat 

released during the explosion constitutes the direct energy 

source for work, which is the basis for driving material 

changes and generating destructive power. For reactions 

that release almost no heat or very little heat, they cannot 

accumulate enough energy to support work, so they do not 

have the properties of triggering explosions.

In an explosion, the impact on the surrounding 

environment is mainly caused by the rapid expansion of 

high-temperature and high-pressure gases generated at 

the moment of the explosion. This process highlights the 

core role of gas products in the explosion mechanism 

- as a medium for work. Therefore, even if a chemical 

reaction is extremely efficient in energy release and has 

a very fast reaction rate, it does not have the potential to 

cause an explosion if it is not accompanied by significant 

gas generation. The reason is that without gas as a carrier 

for energy transfer, effective work cannot be done on the 

outside world, as shown by the thermite reaction, which, 

although it is a strongly exothermic reaction, does not 

produce enough gas to cause an explosion.

The vapor explosion of aviation kerosene, as a 

typical explosive mixed reaction, is centered on the 
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gaseous mixture formed by the volatilization of the fuel, 

which mixes with the air within a specific concentration 

range and then explodes suddenly under the triggering 

of external energy. The kerosene cloud explosion is a 

more delicate drama, which shows that the fuel droplets 

are distributed in a specific form in space. These tiny 

droplets are instantly ignited under the action of external 

fire sources, triggering a chain reaction. The formation of 

kerosene cloud is a fragmentation process of liquid under 

the joint compression of internal and external forces, 

forming tiny particles suspended in the air. Compared 

with pure gas phase explosion, the explosion process of 

liquid fuel cloud is intertwined with complex physical 

transformations (such as dispersion, fragmentation, 

evaporation) and fierce chemical reactions (combustion 

and explosion). Its uniqueness lies in the tiny size of the 

cloud-like liquid phase, which gives it characteristics 

similar to gas phase explosion, so it is often regarded 

as a manifestation of gas phase explosion. From the 

perspective of chemical mechanism, whether it is liquid 

fuel or gas mixture, the deep-seated cause of its explosion 

is based on the same chemical kinetic principle.

2.1.2 Explosion parameters
This  a r t i c le  deep ly  explores  the  explos ion 

characteristics of aviation kerosene mist (i.e. its vapor 

form) under specific conditions, focusing specifically on 

the explosion pressure and velocity, two key parameters 

that directly reflect the power of the explosion. In addition, 

the critical detonation energy and explosion limit are 

carefully analyzed. These two indicators play a vital role 

in assessing the triggering difficulty and safety threshold 

of the explosion. Through a comprehensive study of 

these parameters, the aim is to enhance the understanding 

and prevention and control capabilities of the potential 

explosion risks of aviation kerosene.

When aviation kerosene vapor is mixed with air, it 

will not directly cause an explosion in any proportion. 

Its characteristic is that there is a specific concentration 

range, which defines the minimum (i.e., lower explosion 

limit) and maximum (i.e., upper explosion limit) vapor 

concentrations where an explosion may occur. Only when 

the concentration of this mixture falls within this range 

and is excited by sufficient energy, will an explosion 

occur. This range is called the explosion limit. This limit is 

usually quantified as the volume ratio of vapor in air, and 

this limit value is measured under standard environmental 

conditions (such as normal temperature and pressure). 

However, it is worth noting that the actual range of the 

explosion limit can be adjusted with changes in the initial 

temperature of the environment, the pressure level, the 

oxygen content, the intervention of inert gas, the ignition 

energy, and the characteristics of the container [S1-52] . In 

fact, the cloud formed by kerosene and the corresponding 

vapor-air mixture show a high degree of similarity in 

terms of the lower explosion limit. However, it is worth 

noting that the lower explosion limit of flammable gas (or 

vapor) traditionally recognized is set above the flash point 

temperature, and this limit is crucial for safe operation. 

In contrast, the lower explosion limit of kerosene mist 

crosses this boundary and extends downward to the area 

below the flash point temperature. This characteristic 

needs special consideration when assessing its potential 

explosion risk. Table 2.1 lists the explosion limit ranges 

of many common flammable gases and liquids in detail, 

further revealing this difference .

2.1.3 Liquid fuel explosion mechanism
Under certain conditions, aviation kerosene can 

respond to external energy stimulation and cause violent 

combustion and even explosion. During this process, the 

spread rate of the flame may increase sharply, realizing 

the transformation from stable combustion to explosive 

combustion, that is, the transition from deflagration to 

detonation. It is worth noting that the complexity of 

aviation kerosene explosions stems from the intricate 

Name of combustible 
material

Lower explosion 
limit/%

Upper explosion 
limit/%

Methane 4.6 14.3
Methanol 6.4 37.0

Anhydrous ethanol 3.5 15
93# Gasoline 1.3 7.1

diesel fuel 0.5 4.1

Table 2.1 Explosion limits of common flammable gases and flammable 
liquids
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physical and chemical processes behind them, which 

are driven by both thermal reactions and chain reaction 

mechanisms. These two mechanisms are intertwined and 

reinforce each other, jointly maintaining and promoting 

the continuation of the explosion reaction. Given that 

aviation kerosene is mainly composed of about 90% 

hydrocarbon compounds, the following will focus on 

the mechanism of action of hydrocarbon fuels in the 

explosion process as the key to understanding its overall 

behavior.

2.2 Overview of Jet Fuel Consumption Forecast
2.2.1 Factors affecting aviation kerosene 
consumption

With the booming global economy and the increasing 

frequency of human activities, greenhouse gas emissions 

have risen sharply, becoming the main driver of global 

warming. In view of this, China has set a clear goal 

to control greenhouse gas emissions to a peak level 

around 2030, and strive to achieve a grand blueprint of 

carbon neutrality by 2060. Looking at the data in 2019, 

the industrial sector, with a share of 51%, has become 

the primary source of carbon emissions in my country; 

followed by the transportation industry, accounting 

for 10%, of which road transportation has an absolute 

dominant position in this field, as high as 75%, and the 

aviation industry is closely behind with a share of 10%. 

The carbon footprint of the aviation industry mainly 

comes from the burning of aviation fuel during flight, 

which accounts for more than 95%. Specifically, the total 

amount of fuel consumed by airlines throughout the year 

is equivalent to 36.89 million tons, which in turn generates 

about 116 million tons of carbon emissions, accounting for 

almost 97% of the carbon emissions of the entire industry. 

In 2021, the EU released the "A ROUTE TO NET ZERO 

EUROPEAN AVIATION" aviation target 2050 plan, 

which drew a clear blueprint for the European aviation 

industry to move towards net zero emissions. The report 

not only deeply analyzed the emission reduction strategies 

of the three key links of airline operations, airspace and 

air traffic management, and airport ground operations, 

but also elaborated on the challenges and factors faced in 

air traffic control technology and aircraft operations, and 

planned multi-stage and multi-dimensional policies and 

action plans to ensure the steady achievement of emission 

reduction targets. In view of the global advocacy of green 

aviation and the strict requirements for environmentally 

friendly aviation in China, coupled with the fact that 

aircraft kerosene consumption occupies a pivotal position 

in the overall operating expenses of airlines, which is 

approximately equivalent to 30% of the main business 

cost, this naturally prompted the airlines to generate a 

strong motivation to promote fuel-saving measures. At 

present, the focus of airline research has shifted to how to 

accurately predict the kerosene consumption of aircraft, 

and to achieve this goal by building a more refined 

prediction model, and strive to achieve significant results 

in reducing kerosene consumption and reducing carbon 

emissions.

affecting aviation kerosene consumption from the 

composition and characteristics of aviation planning data. 

By studying the mechanism of action of these factors, the 

main influencing factors are determined, thus providing 

theoretical support for the prediction of aviation kerosene 

consumption.

This part selected 156 round-trip A330 flights 

between Beijing Capital Airport and Shanghai Hongqiao 

Airport, and extracted various indicators from their actual 

flight schedules, as shown in Table 2.2. At the same time, 

the actual fuel consumption data corresponding to these 

flights was also obtained.

Table 2.2 lists in detail the essential core elements 

of aviation flight, which are accurately recorded within a 

time frame of months. It not only captures meteorological 

dynamics such as flight duration, route wind speed, and 

temperature that directly affect fuel efficiency and safety, 

but also deeply analyzes the flight altitude layer and 

expected air distance, laying the foundation for accurate 

flight planning. In terms of fuel management, the table 

details the diversified needs from the basic fuel volume 

of the planned flight to the maneuvering fuel, unexpected 

fuel, alternate fuel, and standard waiting fuel to deal 

with various emergencies, ensuring that the aircraft can 

maintain sufficient fuel reserves in any situation. At 

the same time, the accurate calculation of takeoff fuel, 
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taxiing fuel, and total fuel has laid the foundation for fuel 

allocation that emphasizes both economy and safety at the 

beginning of the flight. Finally, the accumulation of actual 

fuel consumption data, like a mirror of flight performance, 

provides valuable data support for subsequent operational 

analysis and strategy optimization, and promotes the 

intelligent process of aviation operation decision-making.

According to the data in Figure 2.2, when the wind 

force increases, the fuel consumption will decrease with 

the increase of wind speed; conversely, when the wind 

speed decreases, the fuel consumption will increase. The 

same phenomenon also occurs under headwind conditions, 

which shows that wind speed has a significant negative 

correlation with aircraft fuel consumption. In addition, the 

relationship between factors such as air distance, flight 

time, takeoff fuel, flight fuel, required fuel, total fuel and 

takeoff weight and fuel consumption also shows a similar 

law.

The temperature data is compared and analyzed with 

the actual fuel consumption of the aircraft, as shown in 

Figure 2.3.

According to Figure 2.3, it can be seen that there is a 

weak linear relationship between temperature and actual 

fuel consumption of the aircraft, and this fitting effect 

is not good, which needs further study. In addition, the 

relationship between additional fuel and alternate fuel and 

Table 2.2 Parameter extraction description table

serial number parameter illustrate unit
1 month 1-12 --
2 Flight time Estimated flight time min
3 Wind speed on route Estimated wind speed k
4 En route temperature Estimated temperature ℃
5 Level Estimated flight level/ hft
6 Air distance Estimated air distance nm
7 model Aircraft Model
8 Engine Type Aircraft engine model
9 Flight fuel Planned voyage fuel kg
10 Motor oil Planned fuel quantity kg
11 Unexpected fuel Plan for unexpected fuel quantities kg
12 Alternate fuel Planned fuel quantity for alternate 

landing
kg

13 Standard waiting oil Planned standard waiting fuel 
volume

kg

14 Essential Oils Plan required fuel quantity kg
15 Extra Oil Plan for extra fuel kg
16 Take-off oil Planned fuel level for takeoff kg
17 Sliding oil Planned taxi fuel quantity kg
18 Total oil Planned total fuel volume kg
19 Takeoff weight Planned takeoff weight kg
20 Actual fuel consumption Actual fuel consumption kg

Figure 2.2 Relationship between wind speed and actual fuel consumption

Figure 2.3 Relationship between temperature and actual fuel consumption
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actual fuel consumption also shows similar characteristics.

The aircraft altitude data is compared and analyzed 

with the actual fuel consumption, as shown in Figure 2.4.

Due to the limitation of the data in this paper, the 

selected aircraft is only suitable for a single route. 

Therefore, when designing the aircraft, there are fewer 

optional altitude layers, mainly concentrated between 

331 hft and 301 hft . In addition, since the model fails 

to fully reflect the actual flight status and the actual fuel 

consumption, it was not considered in subsequent studies. 

Similarly, the relationship between monthly lubricants and 

actual fuel consumption is similar.

In summary, since the range of values of factors 

such as altitude layer, month and taxiing oil is relatively 

limited, it is difficult to fully reflect the complex changes 

in actual fuel consumption, so they are excluded from 

consideration in this analysis. Eleven variables, including 

route wind speed, route temperature, air flight distance, 

flight time, takeoff fuel, additional fuel, range fuel, 

required fuel, alternate fuel, total fuel and takeoff weight, 

are preliminarily determined to be related to the actual 

fuel consumption of the aircraft. However, the specific 

forms of these relationships still need to be accurately 

characterized through in-depth multi-dimensional 

analysis.

(1) Principal component analysis

means of dimensionality reduction, principal 

component analysis can integrate multiple complex 

variables into a few core components. The core advantage 

of this multivariate statistical method is that it can 

effectively eliminate redundant information between 

variables, that is, the correlation between them, making 

the analysis more concise and clear. However, this 

process also comes with a certain cost, that is, the specific 

meaning and detailed information of some original 

variables may be weakened or lost during the conversion 

process .

to reduce the dimension of the 11 factors affecting 

fuel consumption and arrange them according to their 

contribution. The results are shown in Table 2.3. As can be 

seen from the table, most of the influencing factors scored 

above 0.3, and the cumulative contribution rate of the first 

9 influencing factors reached 99.99%.

In the in-depth analysis of the complex factors of 

aviation fuel consumption, Table 2.3 uses principal 

component analysis technology to reveal the unique 

role of each factor in total fuel consumption. The most 

prominent one is the trip fuel, with a high score of 

0.3691 and an excellent contribution rate of 65.44%, 

which directly pushes it to the first position affecting 

fuel consumption. Next, the takeoff fuel follows closely 

with a score of 0.3648 and a contribution rate of 18.62%, 

proving the critical importance of the takeoff stage in 

fuel management. In addition, the contribution rate of 

total fuel is 8.34% and the score is 0.3637, which once 

again emphasizes the impact of total fuel control on fuel 

Figure 2.4 Relationship between altitude layer and actual fuel consumption

Influencing 
factors

Score Contribution 
rate/%

Cumulative 
contribution 

rate/%
Flight fuel 0.3691 65.4438 65.4438
Take-off oil 0.3648 18.6187 84.0625

Total oil 0.3637 8.3390 92.4015
Air distance 0.3633 4.6051 97.0066

Wind speed on 
route

-0.3615 2.6479 99.6545

Flight time 0.3584 0.1742 99.8287
Essential Oils 0.3384 0.1455 99.9742
Takeoff weight 0.2849 0.0242 99.9984

En route 
temperature

-0.0790 0.0015 99.9999

Extra Oil 0.0706 0.0001 100.0000

Table 2.3 Principal component contribution table
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efficiency. Although the contribution rates of air distance 

and route wind speed are relatively low (4.61% and 2.65% 

respectively), they are still factors that cannot be ignored . 

Although the flight time, required fuel and takeoff weight are 

slightly inferior in score, their impact on fuel consumption 

is still worthy of attention. As for route temperature, extra 

fuel and alternate fuel, their small contribution rates indicate 

that these factors may be in a relatively minor adjustment 

category when optimizing fuel consumption strategies. In 

summary, this table provides valuable data reference for 

airlines to formulate refined fuel management strategies, 

especially pointing out that trip fuel and takeoff fuel are the 

main focus of improving fuel efficiency.

(2) Grey correlation analysis

grey correlation analysis method is used to evaluate 

by comparing the geometric similarity of the change 

curves of the influencing factors. Since this method has a 

certain degree of subjectivity, this paper also uses two main 

factor analysis methods to study the model and conducts 

a preliminary discussion. The 11 main fuel consumption 

factors are ranked by grey correlation, and the results are 

shown in Table 2.4. It can be seen from the table that the grey 

correlation coefficients of most factors are between 0.7 and 

0.9, and a few factors are lower than 0.7.

Table 2.4 reveals in detail the core factors affecting 

aviation fuel efficiency and their grey correlation analysis, 

and deeply depicts the close relationship between each 

variable and fuel consumption. Among them, air distance 

ranks first with a correlation of up to 0.8314, highlighting 

the decisive role of route planning in controlling fuel 

costs. The flight time (0.8237) and total fuel reserve 

(0.8196) that follow closely are also not to be ignored. 

They emphasize the key impact of flight duration and 

initial fuel planning on fuel efficiency. The amount of 

fuel required for takeoff (0.8176) and fuel consumption 

during the flight (0.7971) also show a high correlation, 

further proving the importance of fuel management at 

the beginning and throughout the flight. In addition, the 

correlation between required fuel (0.7661) and takeoff 

weight (0.7617) is also quite significant, indicating the 

direct contribution of operational details to fuel efficiency. 

Although the impact of alternate landing fuel (0.7222) 

and route temperature (0.6883) is slightly smaller, they 

still provide valuable references for the formulation of 

fuel management strategies. As for the impact of extra 

fuel (0.6749) and en-route wind speed (0.5976), although 

relatively low, they also remind airlines of the aspects 

they need to consider when dealing with uncertainties. 

These analyses provide airlines with a multi-dimensional 

perspective to optimize fuel management strategies and 

improve operational efficiency.

2.2.2 Prediction method of aviation kerosene 
consumption
2.2.2.1 Neural Network Method

In the application of aviation fuel consumption 

management, the neural network method has shown its 

unique advantages. Its core is to take the historical data 

of aircraft fuel consumption as input. Through multiple 

iterations and self-adjustments within the network, 

that is, the "learning" process, the neural network can 

gradually build a deep understanding of fuel consumption 

characteristics. The network model generated by this 

process can accurately predict the fuel consumption 

performance of the aircraft after sufficient data "training", 

as shown in Figure 2.5. In order to further improve the 

generalization ability of the model, unknown data samples 

are then introduced for testing, and the prediction results 

are compared with actual flight data for verification. 

Although early studies such as Trani have attempted to 

predict fuel consumption through neural networks, they 

are limited by the data source that relies on the aircraft 

performance manual, which requires detailed aerodynamic 

Table 2.4 Grey correlation table

Influencing factors Relevance
Air distance 0.8314
Flight time 0.8237

Total oil 0.8196
Take-off oil 0.8176
Flight fuel 0.7971

Essential Oils 0.7661
Takeoff weight 0.7617

Alternate fuel 0.7222
En route temperature 0.6883

Extra Oil 0.6749
Wind speed on route 0.5976
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parameters or a large operating database support, and the 

model needs to be frequently updated to adapt to different 

flight conditions, which limits its wide application and 

recognition. Zhang innovatively combines particle swarm 

optimization (PSO) and back propagation (BP) neural 

networks. By introducing the PSO algorithm to optimize the 

weights and biases of the BP network, this hybrid strategy 

not only innovates the training process of the neural network, 

but also significantly improves the accuracy of the fuel 

prediction model. Unlike the traditional BP algorithm that 

directly adjusts network parameters, this hybrid algorithm 

uses the global search capability of PSO to effectively avoid 

local optimal solutions, thereby achieving a leap in fuel 

prediction accuracy. On the other hand, Khan took a different 

approach and designed a convolutional neural network (CNN) 

based on self-organizing structure (although the original 

text is CNN here, it is understood as a neural network 

with a specific structure according to the context, not a 

convolutional neural network in the traditional sense). The 

network architecture adopts a hierarchical cascade design and 

determines the connection weights between neurons through 

dynamic analysis, providing a novel and efficient solution 

for flight fuel consumption prediction. Although neural 

networks have made significant progress in the field of fuel 

prediction, their complexity has also come with it, especially 

the hyperparameter settings such as learning rate, fine 

adjustment of connection weights, selection of the number of 

hidden layer units, and optimization of the gradient descent 

algorithm, which may become key factors affecting the 

convergence speed and performance of the model.

2.2.2.2 Classification and regression tree method
The CART (Classification and Regression Tree) 

algorithm, carefully crafted by pioneers such as Leo 

Breiman, is a full-featured machine learning tool that 

excels at both classification tasks and regression analysis. 

This algorithm is known for its efficient automation, 

which reduces the need for human intervention, and as a 

non-parametric method, it does not require a preset basic 

function set, which enhances flexibility and adaptability. In 

the field of fuel prediction, CART has shown extraordinary 

stability, especially when dealing with complex flight data 

sets containing outliers and irrelevant data. In specific 

applications, this method achieves model construction and 

optimization by subdividing the data set of the aircraft 

flight process (such as ascent, cruise, and descent) into 

training sets, test sets, and validation sets. For each flight 

phase, a unique CART model is constructed for different 

aircraft models, and the input variables include key factors 

such as flight altitude, ground speed, lift rate, and takeoff 

weight. The output focuses on the standardized single-

engine fuel flow in the ICAO database. Through multiple 

iterations and verifications, the optimal model is selected 

for accurate fuel consumption prediction.

The CART algorithm shows higher accuracy in 

predicting fuel consumption than the ICAO database and 

BADA method. However, its prediction performance is 

slightly insufficient during the descent and approach phase 

of the aircraft, which may be due to the more dynamically 

changing flight operations involved in this phase, which 

increases the difficulty of prediction. It is worth noting that 

the CART algorithm not only provides fuel consumption 

predictions, but also evaluates the uncertainty of fuel flow, 

effectively quantifies the inherent variability in actual 

flight operations and the impact of factors not included 

in the model, and provides a more comprehensive 

perspective for decision-making. Its calculation process is 

simple and efficient.

2.2.2.3 Genetic Algorithm
The genetic algorithm model shows remarkable 

reliability in predicting linear and nonlinear relationships. 

The core of this algorithm starts with the construction of 

a random initial population of appropriate size, which is Figure 2.5 Schematic diagram of three-layer neural network predicting 
fuel consumption
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composed of individuals composed of a series of input 

parameters. Its size is directly related to the quality of the 

algorithm output and the efficiency of solution. Each input 

parameter is encoded in binary form to form a unique 

genome, which has different lengths (i.e., the length of the 

sequence of 0 and 1), which is the basis for the algorithm 

to search for the optimal solution. By simulating the 

crossover (recombination) and mutation mechanisms 

in natural selection, the genetic algorithm continuously 

adjusts the composition of the genome in each iteration, 

aiming to find the coding combination that can produce 

the best output. Specifically, the crossover operation 

involves exchanging the binary bits of specific fragments 

between the selected genomes, while the mutation 

randomly changes the state of certain bits to increase 

the diversity of the population. Given the flexibility and 

optimization capabilities of the genetic algorithm, it can 

be widely used to optimize different aspects of aviation 

flight operations, such as fine-tuning the fuel consumption 

prediction model.

The genetic program architecture is carefully 

constructed from multiple modules. The first module 

focuses on defining its fundamental properties, covering 

the core elements of genetic algorithms such as population 

size, number of iterations, balance between crossover 

and mutation ratios, and accuracy standards. In addition, 

specific considerations are given to the needs of the 

aviation field, such as the consideration of the flight 

dimension D, the wide coverage of observation data, 

and the variable boundaries defined by flight parameters. 

Subsequently, the intermediate module takes on the 

responsibility of fine-tuning and screening gene sequences, 

and realizes cross-recombination and random mutation 

between genes through code to ensure the continuous 

evolution of genetic diversity. The final module focuses on 

the documentation of iterative results, not only recording 

the output, but also performing verification work.

In the performance evaluation of civil airliners, the 

dynamic relationship between fuel flow and pressure 

altitude has become a strategy for accurately predicting 

fuel consumption. By integrating detailed information in 

the flight data recorder (FDR), such as fuel flow, flight 

speed, engine speed N1 and N2, and real-time altitude, 

subtle changes in the flight process can be captured. 

Genetic algorithms are cleverly used to analyze these 

data, especially in the descent phase, revealing the inverse 

correlation law that fuel flow increases as pressure altitude 

decreases. This method not only optimizes the efficiency 

and accuracy of problem solving, but also improves 

performance in duration and sensitivity. In addition, based 

on this discovery, the fuel flow-altitude relationship was 

further explored to support delay control strategies in 

advanced flight management systems.

Through the carefully constructed model, the close 

relationship between fuel flow and flight altitude was 

successfully revealed. Its predicted data graph (see Figure 

2.6) is highly consistent with the actual observed data, 

verifying the accuracy of the model. Further analysis 

of the graph shows that when the aircraft performs a 

descent operation, if it can strategically maintain a higher 

flight altitude for as long as possible (i.e. reduce the 

frequency of low-altitude crossings), fuel efficiency will 

be significantly improved. This key discovery provides 

airlines with a new perspective and tool for optimizing 

fuel consumption strategies and formulating more 

economical and efficient flight plans.

2.3 Summary of this chapter
This chapter deeply analyzes the key attribute 

of aviation kerosene - anti-knock performance, and 

proactively explores its consumption prediction strategy. 

Figure 2.5 Schematic diagram of three-layer neural network predicting 
fuel consumption
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First, focusing on anti-knock performance, the causes 

of detonation, key explosion indicators, and the unique 

explosion mechanism of liquid fuel are carefully 

analyzed, thus revealing the potential safety challenges 

of aviation kerosene under extreme operating conditions. 

This analysis not only deepens the understanding of 

the safety boundary of aviation kerosene, but also 

highlights the rigor that is indispensable to ensuring 

aviation flight safety. Subsequently, turning to the field of 

consumption prediction, a comprehensive review of the 

multi-dimensional factors that affect aviation kerosene 

consumption, such as flight range, air wind speed 

conditions, and aircraft models, is conducted, and current 

advanced prediction tools, such as statistical models based 

on big data and cutting-edge machine learning algorithms, 

are introduced. Through this comprehensive perspective, 

this chapter provides airlines with valuable insights 

into optimizing fuel efficiency and reducing operating 

costs, and opens up new paths for subsequent research 

on aviation kerosene performance optimization and cost 

control.

3 Analysis of Anti-explosion 
Performance  of  Aviat ion 
Kerosene

This chapter focuses on the study of the cloud 

explosion behavior of RP-3 aviation kerosene in a large 

vertical detonation tube, and uses high-intensity ignition 

methods to conduct experiments. The experiment deeply 

analyzes the kerosene spray characteristics, especially 

how the spray pressure and ignition delay time affect 

the key parameters of kerosene cloud explosion. By 

precisely controlling the spray pressure and adjusting the 

ignition delay, the specific effects of these variables on 

the kerosene explosion velocity and explosion pressure 

are quantified. In addition, by adjusting the charge of the 

detonator to change the initial energy input, the trend 

of the change of the aviation kerosene cloud explosion 

characteristics with the detonation energy is systematically 

explored. The experiment also covers kerosene clouds at 

different concentration equivalence ratios, and detailed 

measurements of multiple parameters including explosion 

velocity, pressure, and the minimum detonation energy 

(critical detonation energy) required to achieve explosion. 

This series of experiments not only reveals the basic 

laws of aviation kerosene cloud explosion, but also lays a 

solid experimental foundation for in-depth exploration of 

the field of aviation kerosene combustion and explosion 

safety research .

3.1 Air-kerosene cloud deflagration experiment
3.1.1 Experimental device and test system

The experimental equipment is a vertical shock tube, 

the main structure of which includes the shock tube body, 

spray system, ignition source and synchronous control 

system, and pressure measurement system.

3.1.1.1 Vertical shock tube
The core equipment studied in this chapter is a large 

vertical detonation tube independently designed and 

manufactured by the Safety Engineering Department 

of Nanjing University of Science and Technology. It 

is exquisitely divided into three functional areas: the 

detonation source section, the main experimental section, 

and the observation window section. The tube is 5.4 

meters long, with an outer diameter of 240 mm and an 

inner diameter of 200 mm. During the experiment, the 

effective space capacity is close to 169 liters. The main 

material is a high-strength 20CrMo gun steel tube, which 

ensures the safety and stability of the experiment.

Along the two sides of the longitudinal axis of the 

detonation tube, 32 sets of symmetrically distributed 

injection systems are cleverly arranged, and the distance 

between each set of nozzles is carefully set to 350 mm. 

These systems can not only effectively spread solid 

powder evenly into the space inside the tube, but also 

refine liquid substances into tiny droplets, fully mix them 

with air, and form the cloud-like environment required 

for the experiment. In addition, multiple measurement 

interfaces are carefully arranged around the tube body, 

with a uniform spacing of 500 mm.

3.1.1.2 Injection device
In the experiment, a high-pressure gas-driven 

injection system was used to finely atomize the aviation 
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kerosene and evenly distribute it in the internal space 

of the shock tube. The core of this system is to use the 

injection devices arranged on both sides, combined with 

high-pressure gas and specially designed nozzles, to 

efficiently convert the fuel into fine mist. Although the 

operation process is relatively complicated, it ensures the 

uniform distribution of droplets in the tube. This system 

consists of multiple components working together: the 

air compressor is responsible for pressurizing the air and 

storing it in a high-pressure air chamber with a volume of 

about 690 ml until it automatically stops after reaching the 

preset pressure threshold. At this time, the explosion-proof 

solenoid valve remains closed, waiting for instructions. 

Once the solenoid valve receives a signal to open, high-

pressure gas instantly flows into the special "U"-shaped 

liquid storage tube, pushing the kerosene liquid to the 

hollow hemispherical nozzle with 119 tiny nozzle holes 

(aperture of about 1 mm). The kerosene is refined into 

countless tiny droplets at the moment of passing through 

these precise holes, thus forming a uniform cloud-like 

distribution in the shock tube.

3.1.1.3 Ignition source and synchronization 
control system

In the experiment, the core of the detonator is 

composed of an 8# industrial detonator and a variable 

amount of RDX plastic explosive. The energy required 

for detonation is finely controlled by adjusting the weight 

of the explosive. This energy regulation mechanism 

ensures the flexibility of the experimental conditions. 

The detonator assembly is precisely placed at the flange 

position at the bottom of the shock tube and is firmly 

connected to the detonator base with the help of a delayed 

igniter, aiming to guide the shock wave generated by 

the explosion to propagate vertically upward, thereby 

ensuring the accuracy of the experimental results. Based 

on the energy calculation formula in existing literature, 

the direct relationship between the energy output of the 

explosive in the experiment and the amount of medicine it 

contains can be clearly determined.

E = 5945.3 + 5860 × W

Where: E is the initial energy, J; W is the weight of 

the explosive, g. The relationship between the amount of 

explosive and the detonation energy is shown in Table 3.1.

In the shock tube experimental environment, given 

the instantaneous release characteristics of the detonation 

energy, it is assumed to be uniformly distributed along the 

radial direction of the shock tube cross section. In order 

to quantify this energy distribution, the concept of plane 

detonation energy E1 is introduced, which represents 

the detonation energy E distributed per unit area, thus 

providing a more accurate way to measure energy density.

Where: r is the inner radius of the shock tube, m.

Figure 3.1 Physical picture (a) and schematic diagram (b) of vertical 
shock tube experimental system

Figure 3.2 Schematic diagram of powder spraying device

Detonation source Output energy/(KJ) Plane detonation 
energy/(MJ/m 2 )

1D 5.94 0.19
1D+1g RDX 11.78 0.37
1D+2gRDX 17.66 0.56
1D+3g RDX 23.53 0.75
1D+5g RDX 35.25 1.12
1D+8g RDX 52.82 1.68

Table 3.1 Explosive quantity and detonation energy
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independently developed by Nanjing University 

of Science and Technology has a unique design that 

realizes precise timing control of the solenoid valve and 

detonator in the injection system. The core of this device 

is to flexibly set the time interval between the opening 

of the solenoid valve and the triggering of the detonator, 

ensuring that after the material is smoothly sprayed into 

the shock tube, the solenoid valve is immediately closed 

to form a closed environment, and then the detonator is 

accurately detonated.

As shown in Figure 3.3, once the start button is 

triggered, the built-in solenoid valve control module and 

the ignition delay system are started in parallel, each 

operating independently according to the preset delay 

parameters, cleverly coordinating the sequence of fuel 

injection and ignition actions, demonstrating a high degree 

of time control accuracy.

3.1.1.4 Stress test system
The pressure measurement system integrates multiple 

core components, including pressure sensors, charge 

conversion units, data capture devices, and back-end 

processing software. The operation process is briefly 

described as follows: When the experimental sample 

explodes in the shock tube, the shock wave released hits 

the pressure sensor, which responds and converts the 

sensed pressure fluctuations into signals in the form of 

electric charges. These charge signals are then directed 

to the charge amplifier for conversion into easy-to-

process voltage signals. Then, the data acquisition system 

intervenes to capture and record these voltage signals. 

Finally, these data are processed by computer, and a 

dynamic curve graph of pressure changes over time is 

drawn using special software, which enables intuitive 

display and in-depth analysis of the experimental results.

(1) Pressure sensor

The core of this experiment is to use the piezoelectric 

properties of quartz crystals to build a pressure sensor 

system. This property is manifested in that when external 

force acts on the crystal, its internal structure produces 

polarization, which causes the separation of positive and 

negative charges on the surface of the crystal, forming 

a potential difference. This conversion mechanism 

ensures that pressure changes can be accurately and 

directly converted into electrical signal output. Five such 

sensors were deployed in the experiment, which were 

arranged in a straight line with an interval of 0.5 meters 

and an increasing distance from the detonation point, 

ranging from 1.4 meters to 3.9 meters. These sensors 

are carefully built by Yangzhou Radio Factory No. 2 

and feature excellent piezoelectric quartz technology. 

Their highlights include: -10PC electrical signal change 

can be output for every 10Pa pressure change, showing 

extremely high sensitivity; linearity error is less than 1% 

of the full scale, ensuring the precise linear relationship 

of the measurement results; insulation impedance of up to 

2103Ω, enhancing the reliability of signal transmission; 

a wide measurement range covering 0 to 60atm, suitable 

for a variety of environments; stable operation within 

the operating temperature range of -40℃ to 150℃, 

showing excellent temperature adaptability; and 150% 

overload capacity, ensuring the safety performance of 

the equipment under extreme conditions. In addition, 

the sampling frequency of 1MHz ensures rapid capture 

and processing of data. Combined with its long life, low 

temperature coefficient and wide frequency response 

range, this sensor system is undoubtedly an ideal choice 

for high-precision pressure measurement.

(2) Charge amplifier

As a key component of signal conversion, the core 

function of the charge amplifier is to effectively reduce 

the impedance of the sensor output signal, achieve a 

transition from high to low, and cleverly convert the 

charge signal transmitted by the sensor into a voltage 

Figure 3.3 Working principle of DHY-6 ignition delay device
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signal output. The strength of this voltage signal is 

directly positively correlated to the increase in the amount 

of input charge, which effectively amplifies the weak 

signal from the sensor. In the experimental configuration, 

this amplifier provides six independent channels, each 

of which has seven adjustment options from basic to 

thousand-fold amplification, which can flexibly meet 

different experimental needs. In addition, the filter 

integrated in each channel has five settings (1 to 100) to 

ensure the accuracy and purity of signal processing and 

adapt to diverse experimental filtering requirements. It 

is particularly worth mentioning that the amplifier has 

automatically completed data calibration at the time of 

output, and the user does not need to calibrate it again 

in the subsequent software processing. The calibration 

value is intuitively displayed on the control panel, which 

greatly improves the efficiency and convenience of the 

experiment. In this experiment, the YE5853A charge 

amplifier of Jiangsu Lianneng Electronic Technology Co., 

Ltd. was used.

(3) Data acquisition device and supporting 

software

The data acquisition system is composed of the PCI-

1112 data acquisition card carefully built by Chengdu 

Micro Test Technology Co., Ltd. and its supporting 

advanced software, forming a set of efficient data 

processing solutions. The data acquisition card stands 

out for its excellent performance. It has four independent 

acquisition channels, each channel supports a sampling 

frequency of up to 60MHz/s, ensuring the high-speed data 

capture capability. Its 14-bit A/D conversion accuracy 

provides a solid guarantee for data quality. In terms of 

storage, the card provides flexible storage configuration 

options, with a storage capacity starting from 2kB and 

a maximum expandable to 1MB, and supports 2kB 

units. The system has functions such as data acquisition, 

storage, processing and calculation. The supporting 

data acquisition software can control various instrument 

parameters, set sampling, perform data acquisition and 

transmission reading and writing, and also supports screen 

display, value comparison, integration, storage, waveform 

spectrum analysis, and Fourier analysis.

3.1.2 Experimental aviation kerosene fuel
Aviation kerosene, as a product of deep processing of 

petroleum, is transparent in texture. Its refining process 

integrates a variety of technologies such as straight 

distillation, hydrocracking and hydrofining. One of its 

core varieties, RP-3 aviation kerosene, or No. 3 jet fuel, 

is carefully blended from hydrocarbons from multiple 

distillation sections and incorporates key ingredients such 

as tetraethyl lead, antistatic additives, antioxidants and 

corrosion inhibitors to ensure its excellent performance. 

The domestically produced RP-3 kerosene used in 

the experiment is a heavyweight kerosene fuel with a 

complex chemical composition that covers hundreds of 

different substances, which can be roughly divided into 

92.1% saturated hydrocarbons and about 7.9% aromatic 

hydrocarbons. The specific proportions are shown in Table 

3.2.

3.1.2.1 Main physical and chemical properties
Table 3.3 lists its main physical and chemical 

properties. Among them, density, viscosity, calorific value 

and distillation range are the key factors that determine its 

combustion and explosion performance.

Cycloalkanes
total

Single 
Ring

Three 
Rings

52.2 33.8 6.0 0.1 5.1 1.3 0.6 0.9 100

Table 3.2 RP.3 aviation kerosene components

Physical and 
chemical 
properties

value
Physical and 

chemical 
properties

value

Molecular 
formula C7-C16 Smoke point 

(mm) 24.6

Molecular 
weight 148.83

Latent heat of 
vaporization (kg/ 

kj )
345

20℃ density/(g/
cm 3 ) 0.79 Low calorific 

value (kj / m3 ) 43200

Boiling 
point(℃）

185 Theoretical air-
fuel ratio 16

Condensation 
point (℃) -60 Cetane number 43

Table 3.3 Main physical and chemical properties of RP-3 aviation kerosene
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From the data shown in Table 3.3, we can fully 

understand the key physical and chemical characteristics 

of RP-3 aviation kerosene, which together constitute 

the cornerstone of its high-efficiency aviation fuel. Its 

chemical structure is complex, consisting of hydrocarbon 

compounds from C7 to C16, with an average molecular 

weight of 148.83, showing rich chemical diversity. In 

terms of density, RP-3 is precisely positioned with a 

density of 0.79 g/cm³, which perfectly meets the weight 

and volume requirements of aviation applications. In 

terms of temperature tolerance, its excellent boiling 

point (185℃) and extremely low freezing point 

(-60℃) ensure stable operation under various extreme 

climatic conditions. In terms of combustion quality, the 

combination of low smoke point (24.6 mm) and high 

latent heat of vaporization (345 kg/kJ) promotes clean 

and efficient combustion. At the same time, its low 

calorific value is as high as 43200 kJ/m³, combined with 

the theoretical air-fuel ratio of 16, further improving 

the efficiency of energy conversion. Furthermore, the 

excellent performance of cetane number of 43 verifies 

the high quality and applicability of RP-3 in the field of 

aviation fuel. These detailed and in-depth physical and 

chemical property analyses not only lay a solid foundation 

for the widespread application of RP-3, but also 

provide valuable reference for the innovation and safety 

assessment of future aviation fuels.

3.1.2.2 Kerosene substitute model selection
Given the extreme complexity of kerosene, which 

combines hundreds of different alkanes, cycloalkanes and 

aromatic compounds, this characteristic makes it a major 

challenge to accurately analyze its detailed composition 

under current technology. In addition, the composition of 

kerosene will vary depending on the origin, manufacturer 

and even the year of production, further increasing the 

difficulty of analysis. In order to improve the universal 

applicability of scientific research and the repeatability 

of experimental results, researchers have introduced the 

concept of hydrocarbon fuel substitutes, that is, a mixture 

of a few pure hydrocarbons in a specific proportion to 

accurately simulate the performance of real kerosene in 

thermophysical properties and a series of other physical 

and chemical properties. In the experimental design for 

aviation kerosene cloud explosion, the specific chemical 

formula of the fuel will directly affect the calculation 

result of its stoichiometric ratio φ. Therefore, it is crucial 

to select a suitable substitute model and determine its 

molecular formula before the experiment. This experiment 

adopted the substitution model constructed by Yu 

Weiming, which carefully proportioned chain alkanes 

(49%), cycloalkanes (44%) and aromatic hydrocarbons 

(7%). The average molecular formula was determined to 

be C10.57H21.99, the molecular weight was 148.83, and 

the theoretical air-fuel ratio was set to 16.

3.1.3 Experimental methods
3.1.3.1 Air tightness inspection

Before conducting an overpressure measurement 

experiment of a fuel cloud explosion in a shock tube, 

it is crucial to ensure the airtightness of the shock tube 

to prevent leakage from affecting the accuracy of the 

pressure value. To this end, a series of pre-detection 

measures were taken. First, after sealing the shock tube, 

the internal air pressure was reduced to 0.04MPa using 

a vacuum pump and observed for one hour. During this 

period, the pressure was recorded to rise to 0.049MPa, 

revealing an average pressure drop of 0.15kPa per minute, 

equivalent to 0.25% gas leakage per minute. Subsequently, 

the reverse operation was performed, the high-pressure 

air chamber was inflated by an air compressor, and the 

gas was precisely controlled to be injected into the shock 

tube using a solenoid valve to bring the internal pressure 

to 0.25MPa. After the same one-hour test, the pressure 

dropped to 0.23MPa, indicating that the leakage rate was 

about 0.13% per minute at a higher pressure. This series 

of airtightness test results show that the overall sealing 

performance of the shock tube meets the experimental 

requirements.

3.1.3.2 Experimental procedures
In the standard experimental process, the first step is 

to implement the alternating injection of liquid fuel, which 

is carefully distributed to both sides of the respective "U"-

shaped tubes. At the same time, the air compressor starts 

working, pressing the dehumidified dry air into the air 

tank to ensure that the preset pressure standard is reached. 
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Subsequently, the detonator is safely placed in the lower 

flange position, and the experimental environment is 

prepared by tightly closing the upper and lower flanges. 

Once ready, the air compressor is started and the pressure 

monitoring system is configured synchronously. At 

this time, the DHY-6 delay controller plays a key role, 

accurately controlling the activation of the solenoid 

valve and the detonator in sequence, thereby triggering 

the explosion of the detonation source and recording the 

pressure data in real time. After each test cycle, the tube 

body will be thoroughly cleaned with fresh compressed 

air for multiple rounds to ensure the purity of subsequent 

experiments. In order to verify the stability and accuracy 

of the experimental data, the entire experimental process 

will be repeated twice .

3.1.3.3 Method for determining critical detonation 
energy

In the experiment, determining the critical detonation 

energy of the fuel relies on the carefully designed rise-

and-fall method and the fold test method. The core of 

these two methods is to locate the energy threshold by 

step-by-step approximation, that is, first define an energy 

point that is sufficient to trigger the fuel cloud explosion 

and an energy point that is insufficient to stimulate the 

reaction. Then, the average of these two energy values is 

selected as the starting point for subsequent tests. If the 

test results show that the fuel is successfully ignited and 

the flame spreads to the top of the shock tube, the energy 

range is further narrowed to the median of the current 

successful detonation energy and the last failed attempt 

energy; conversely, if no detonation phenomenon is 

observed, it is adjusted to the median of the current failed 

energy and the last successful detonation energy. This 

process is repeated until the measured detonation energy 

stabilizes at the preset 0.02MJ/m².

3.1.4 Calculation of concentration equivalence 
ratio

When discussing the RP-3 aviation kerosene 

hydrocarbon fuel substitute model proposed by Weiming, 

the concentration equivalence ratio in the experiment 

was accurately set based on its molecular weight of 

148.83. This equivalence ratio qφ is essentially the mass 

ratio between the theoretical amount of air required for 

complete combustion of the fuel and the actual amount 

of air supplied. When the φ value reaches the ideal state 

of 1, it means that the fuel and oxygen react completely 

to produce pure carbon dioxide and water. In order to 

determine the corresponding fuel volume v when φ=1, 

the Clapeyron equation is used to estimate the number of 

moles of air in the tube n, and then the volume v of the 

required fuel is inferred through a specific calculation 

formula under the condition that the concentration 

equivalence ratio p is exactly 1.

Where (3.1) P is the pressure in the shock tube, Pa; V 

is the volume of the shock tube, m 3 ; n is the amount of 

air in the shock tube, mol; T is the absolute temperature 

of the environment, K; R is the gas constant, J/(mol-k). 

(3.2) v is the volume of the fuel when the concentration 

equivalence ratio o=1, ml; M is the molecular weight of 

the fuel; a is the fuel air-fuel ratio; p is the fuel density, 

g/cm³ (see Table 3.3 for the values). In view of the large 

differences in the physical performance indicators of 

the currently used aviation kerosene, by comparing the 

physical quantities in different data, it is found that the 

difference between the two is about 1%.

3.1.4 Result Analysis
3.1.4.1 Effect of spray pressure on kerosene cloud 
explosion velocity and pressure

In order to explore the influence of the initial pressure 

of compressed air on the explosion characteristics of RP-3 

aviation kerosene cloud, especially the key parameters 

such as cloud particle size and specific surface area, 

and then how to regulate the pressure peak and speed 

of the explosion, a systematic study was designed. The 

experiment achieved five different levels of compressed 

(3.1)

(3.2)
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air pressure in the air tank in the range of 0.2MPa to 

0.6MPa by finely adjusting the operating parameters 

of the air compressor. These pressure levels directly 

correspond to different spray pressure conditions. Under 

fixed detonation conditions - using 1 8# industrial 

detonator combined with 5g explosives as the detonation 

source to ensure that the plane detonation energy E1 is 

constant at 1.12MJ/m² - the explosion pressure and speed 

of kerosene cloud under different spray pressures were 

measured. During the experiment, a uniform amount of 

39ml of fuel was used, the equivalent ratio concentration 

was maintained at 0.91, and a delayed ignition time of 

0.80 seconds was set to ensure the comparability and 

accuracy of the data. Tables 3.4 and 3.5 record the specific 

measurement results under these experimental conditions 

in detail. And the average explosion pressure and average 

explosion speed are used as the ordinate, and the spray 

pressure Ps is used as the horizontal axis, as shown in 

Figure 3.7. The average explosion overpressure is defined 

as: the average value of P2 to P6. Because the explosion 

overpressure measured by the 2# sensor is greatly affected 

by the detonation source, P1 is not included in the 

averaging range. The average explosion speed is defined 

as: the average value of D1 to D5.

Where P2 to P6 in (3.3) represent the pressure values 

measured from sensor 3# to sensor 7*, MPa. Where D1 to 

D5 in (3.4) represent the average explosion propagation 

speed from sensor 3# to sensor 7#, m/s.

Table 3.4 presents in detail the changes in explosion 

overpressure of aviation kerosene under different spray 

pressure conditions, revealing a significant correlation 

between pressure and overpressure. Specifically, at 

an initial spray pressure of 0.20 MPa, the explosion 

overpressure showed a large variability, ranging from 

0.53 to 1.22 MPa, which suggests the instability of 

explosion energy under low pressure. As the pressure 

increased to 0.30 MPa, an obvious trend was that the 

explosion overpressure generally increased, with a 

peak value of 1.27 MPa, highlighting the direct effect 

of increasing spray pressure on increasing explosion 

intensity. Entering the 0.40 MPa interval, although 

the overpressure level continued to rise, its fluctuation 

range narrowed significantly, indicating that the spray 

pressure effect gradually tended to saturation. Finally, 

in the high pressure domain of 0.50 MPa to 0.60 MPa, 

the explosion overpressure stabilized between 1.28 and 

1.31 MPa, indicating that under high spray pressure, the 

contribution of further increasing pressure to the increase 

in overpressure tended to be marginal. These data are of 

indispensable value for gaining a deeper understanding of 

the dynamic changes in the explosion behavior of aviation 

kerosene and guiding the formulation of safe operations 

and risk management strategies.

Table 3.5 records in detail the changing trend of the 

explosion velocity of aviation kerosene under different 

(3.3)

(3.4)

Spray 
pressure 
Ps/MPa

Explosion overpressure P(MPa)

P1 P2 P3 P4 P5 P6 p
0.20 1.22 0.59 0.53 0.55 0.51 0.53 0.54
0.30 1.27 0.71 0.57 0.56 0.56 0.56 0.59
0.40 1.30 0.73 0.53 0.62 0.61 0.62 0.62
0.50 1.31 0.71 0.61 0.58 0.57 0.60 0.61
0.60 1.28 0.68 0.56 0.60 0.57 0.59 0.60

Spray 
pressure

Explosion speed D(m/s)
D1 D2 D3 D4 D5

D
0.20 622 615 592 589 543 592
0.30 647 631 592 579 556 601
0.40 673 624 604 578 561 608
0.50 657 618 584 596 560 603
0.60 642 631 589 589 569 604

Table 3.5 Explosion velocity under different detonation energy 

conditions
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spray pressure environments, revealing the positive 

correlation between increased pressure and increased 

explosion velocity. Specifically, at a base pressure of 

0.20 MPa, the explosion velocity fluctuates significantly, 

ranging from 543 to 622 m/s, indicating that pressure 

in this range has a significant effect on the explosion 

performance but is not yet stable. As the pressure climbs 

to 0.30 MPa, the overall level of the explosion velocity 

moves up significantly, with the highest value jumping to 

647 m/s and the lowest value also stabilizing at 556 m/s, 

reflecting the direct promotion of the pressure increase on 

the explosion velocity. When further pressurized to 0.40 

MPa, the explosion velocity continues to rise steadily, 

reaching a maximum of 673 m/s, while the lower limit 

remains at 578 m/s, showing stronger stability. However, 

when the pressure increases to 0.50 MPa and 0.60 MPa, 

although the explosion velocity fluctuations narrow, they 

remain within the range of 560 to 657 m/s, suggesting 

a possible nonlinear relationship between pressure and 

explosion velocity. These findings provide valuable data 

for a deeper understanding of the explosion behavior of 

aviation kerosene under different pressure conditions, and 

are of great significance for safety risk assessment and 

optimization of emergency measures.

The data in Figure 3.4 reveals a significant 

phenomenon: when the ignition delay time is exactly 

1.00 seconds, the explosion speed and pressure of the 

aviation kerosene cloud both climb to the peak. It is 

worth noting that if the ignition delay time is lower than 

this threshold, the explosion overpressure and speed 

gradually increase with the increase of the delay, but the 

increase is relatively gentle; once the delay exceeds 1.00 

seconds, both show a significant downward trend. This 

phenomenon can be attributed to the efficiency difference 

of the atomization process: when the atomization time is 

less than 1.00 seconds, the kerosene cloud is unevenly 

distributed, resulting in the failure of the fuel to fully mix 

and react, thereby limiting the growth of the explosion 

overpressure. On the contrary, when the delay exceeds 

1.00 seconds, the cloud settles under the influence of 

gravity, the concentration is diluted, and some fuel fails 

to participate in the explosion reaction, thereby reducing 

the overall explosion overpressure. Therefore, based on 

the experimental conditions, it can be determined that 

1.00 seconds is the ideal ignition delay time for aviation 

kerosene cloud to achieve the optimal explosion effect.

3.1.4.2 Effect of detonation energy on kerosene 
cloud explosion velocity and pressure

By changing the detonation source energy, the 

explosion pressure P and explosion velocity D data of 

RP-3 aviation kerosene in the shock tube were obtained 

at five detonation energies ranging from 0.37MJ·m -2 to 

1.68MJm 2. The spray pressure of the experiment was 

0.40MPa, and the concentration equivalence ratio was 

1.28. The results are shown in Tables 3.6 and 3.7.

Table 3.6 records in detail the changes in explosion 

overpressure of aviation kerosene at different detonation 

energy levels, clearly revealing the positive correlation 

between energy and explosion power. Specifically, when 

the detonation energy is maintained at a low level of 0.37 

Table 3.6 Explosion overpressure under different detonation 

energy conditions

Figure 3.4 Explosion velocity, pressure - ignition delay time curve

Explosion overpressure P(MPa)

P1 P2 P3 P4 P5 P6 p
0.37 0.35 0.29 0.27 0.23 0.25 0.26 0.26
0.56 0.81 0.40 0.38 0.35 0.34 0.35 0.36
0.75 0.82 0.47. 0.45 0.43 0.43 0.42 0.44
1.12 1.30 0.76 0.56 0.66 0.64 0.66 0.66
1.68 1.70 0.94 0.77 0.73 0.86 0.96 0.85
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MJ•m², the measured explosion overpressure generally 

hovers between 0.23 and 0.35 MPa, indicating that the 

explosion effect is relatively mild at this energy level. As 

the detonation energy jumps to 0.56 MJ•m², the explosion 

overpressure range is significantly widened, from a 

low of 0.34 MPa to a high of 0.81 MPa, which directly 

reflects the promotion of energy increase on explosion 

intensity. When the energy is further increased to 0.75 

MJ•m² and above, the explosion overpressure continues 

to rise, especially under the condition of 1.12 MJ•m², the 

overpressure peak reaches 1.30 MPa, showing a stronger 

explosion characteristic. At the highest test energy of 

1.68 MJ•m², the explosion overpressure soared to an 

astonishing 1.70 MPa, fully demonstrating that high 

energy input can greatly intensify the explosion reaction 

of aviation kerosene. This discovery is of indispensable 

value for a deeper understanding of the explosion behavior 

of aviation kerosene, optimizing aviation safety strategies 

and explosion-proof design.

By analyzing the explosion velocity data of aviation 

kerosene in Table 3.7, we can clearly observe the 

close relationship between explosion performance and 

detonation energy. As the detonation energy gradually 

increases, the explosion velocity of aviation kerosene 

shows a clear increasing trend. At a lower detonation 

energy of 0.37 MJ•m², the explosion velocity hovers 

between 447 and 559 m/s, revealing its relatively mild 

explosion properties. When the detonation energy is 

increased to 0.56 MJ•m², the upper limit of the explosion 

velocity jumps to 571 m/s, and then at 0.75 MJ•m², 

this speed further accelerates to 631 m/s, indicating 

a significant increase in explosion intensity. As the 

detonation energy jumps to 1.12 MJ•m², the explosion 

velocity increases sharply, reaching a peak of 693 m/s, 

reflecting a more violent explosion behavior. Finally, at 

a detonation energy of up to 1.68 MJ•m², the explosion 

velocity soars to 774 m/s, demonstrating the extreme 

explosion performance of aviation kerosene under extreme 

conditions. This trend not only reveals the decisive role of 

detonation energy on explosion speed, but also provides 

valuable data support for safety assessment and the 

formulation of explosion-proof strategies.

Comprehensive analysis of the data in Table 3.6 and 

Table 3.7 shows that in the same experimental sequence, 

the pressure value experienced a significant drop from 

position P1 to P2. This is mainly because sensor No. 2 (P1) 

is close to the detonation point and is directly exposed 

to the direct impact of the explosion wave, while sensors 

No. 3 to No. 7 are minimally affected because they are 

at a sufficient distance from the detonation point. Further 

observation shows that the pressure value fluctuation 

between P2 and P6 is extremely small, and the floating 

range hardly exceeds 0.10MPa. This stable state indicates 

that after advancing to a position of about 1.9 meters 

in the shock tube, the explosion wave propagation of 

aviation kerosene has stabilized. In addition, Table 3.5 

reveals an interesting phenomenon about the change of 

explosion velocity with distance: under a fixed detonation 

energy, the explosion velocity gradually decreases with 

the increase of distance. Although this decreasing trend 

is relatively gentle, the attenuation ratios from D1 to D5 

(corresponding to energies from 0.37MJ/m² to 1.68MJ/

m²) are 20.03%, 15.06%, 14.84%, 16.45% and 21.31%, 

respectively, showing a clear relationship between energy 

attenuation and distance.

Explosion speed D(m/s)

D1 D2 D3 D4 D5 D
0.37 559 520 476 488 447 498
0.56 571 537 533 521 485 529
0.75 593 560 567 631 505 571
1.12 693 614 618 606 579 622
1.68 774 712 654 649 609 680

Table 3.7 Explosion velocity under different detonation energy 
conditions

Figure 3.5 Average explosion velocity and pressure - Planar 

detonation energy trend chart
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The data shown in Figure 3.5 clearly show that with 

the increase of detonation energy, the average explosion 

velocity D and the average explosion overpressure P both 

show a nearly linear and significant growth trend. This 

phenomenon can be attributed to the complex physical 

transformation process of the fuel cloud under the 

action of shock waves, including the rapid acceleration 

of droplets, morphological reshaping, evaporation, 

and subsequent heat transfer, which ultimately triggers 

oxidation reactions in the gas phase. The energy released 

by these reactions further enhances the leading shock 

wave, and the increase in detonation energy directly 

amplifies this effect. However, despite the increase 

in explosion intensity, the experimentally measured 

explosion velocity and pressure data show that at these 

five different detonation energy levels, the explosion 

of the aviation kerosene cloud did not reach the critical 

state of detonation. This is most likely due to the low 

saturated vapor pressure of aviation kerosene at room 

temperature, which limits its volatility and the amount of 

vapor generated during the detonation process, thereby 

making the energy released by the gas phase chemical 

reaction insufficient to maintain the energy level required 

for detonation.

3.1.4.3 Effect of concentration equivalence ratio 
on kerosene cloud explosion velocity and pressure

The explosion performance of fuel is deeply affected 

by its concentration equivalence ratio during reaction, and 

this law has been specifically verified in the experiment of 

RP-3 aviation kerosene. In the experiment, by adjusting 

the concentration equivalence ratio to seven different 

levels of 0.46, 0.63, 0.91, 1.28, 1.52, 1.67 and 1.98, 

while maintaining a constant plane detonation energy E1 

of 1.12MJ/m², a spray pressure Ps of 0.40MPa, and an 

ignition delay time of 1.00 seconds, the average speed 

and pressure generated by the explosion were measured 

. These data are organized in Tables 3.8 and 3.9, and 

then graphically (as shown in Figure 3.6) to intuitively 

show how the average explosion overpressure P and the 

average explosion speed D fluctuate with the change of 

the concentration equivalence ratio, revealing the close 

relationship between them.

Table 3.8 records in detail the overpressure data 

generated by the explosion of aviation kerosene at 

different concentrations and equivalence ratios, revealing 

the close connection between the overpressure value and 

the equivalence ratio. Specifically, when the equivalence 

ratio is at a low level (such as 0.46), the explosion 

overpressure is stable at around 1.04 MPa; however, as 

the equivalence ratio gradually increases, the explosion 

overpressure also increases significantly, reaching a peak 

of 1.30 MPa at an equivalence ratio of 0.63, showing a 

significant increase in the explosion power. Thereafter, in 

the range close to the stoichiometric ratio (about 0.91 to 

1.28), the explosion overpressure remains at a high level 

of 1.28 to 1.30 MPa, reflecting the relative stability of the 

explosion performance. However, when the equivalence 

ratio further increases to 1.52, the overpressure value 

drops slightly, and then maintains a small fluctuation in 

the range of 1.67 to 1.98, maintaining between 1.27 and 

1.28 MPa. This trend of change not only deepens the 

understanding of the explosion characteristics of aviation 

kerosene, but also provides valuable experimental data 

support for subsequent related research.

Explosion overpressure P(MPa)

P1 P2 P3 P4 P5 P6 p
0.46 1.04 0.65 0.57 0.56 0.57 0.59 0.56
0.63 1.30 0.68 0.60 0.59 0.56 0.53 0.59
0.91 1.28 0.69 0.57 0.62 0.59 0.58 0.61
1.28 1.30 0.76 0.56 0.66 0.64 0.66 0.66
1.52 1.28 0.61 0.61 0.75 0.62 0.63 0.65
1.67 1.27 0.72 0.59 0.68 0.61 0.66 0.65
1.98 1.28 0.72 0.60 0.58 0.58 0.59 0.61

Table 3.8 Explosion overpressure at different concentration equivalence 
ratios

Table 3.9 Explosion velocity at different concentration equivalence ratios

Explosion speed D(m/s)

D1 D2 D3 D4 D5 D
0.46 639 633 609 578 548 601
0.63 651 625 600 578 546 598
0.91 667 638 611 581 546 608
1.28 693 614 618 606 579 622
1.52 632 674 606 603 559 615
1.67 638 676 625 594 558 618
1.98 659 630 600 598 565 610
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From the detailed data in Table 3.9, it can be found 

that the explosion velocity presents a specific evolution 

pattern with the change of the aviation kerosene 

equivalence ratio. At first, at a lower equivalence ratio 

(0.46), the explosion velocity was stable at around 601 m/

s. Subsequently, a small increase in the equivalence ratio 

(to 0.63) did not bring about a significant change in the 

velocity, but instead dropped slightly to 598 m/s. However, 

when the equivalence ratio further increased to the range 

of 0.91 to 1.28, the explosion velocity experienced a 

significant jump, reaching peak values of 608 m/s and 

622 m/s, respectively, indicating that this range is the key 

area for optimizing explosion performance. Afterwards, 

although the velocity slightly dropped to 615 m/s at an 

equivalence ratio of 1.52, the explosion velocity remained 

at a high level at higher equivalence ratios (1.67 and 

1.98), fluctuating between 618 m/s and 610 m/s. These 

data not only reveal the direct effect of equivalence ratio 

on explosion velocity, but also provide valuable insights 

into the explosion behavior of aviation kerosene under 

different concentration conditions.

According to the data in Table 3.8 and Table 3.9, except 

for P1, the maximum explosion overpressure is 0.76 MPa, 

the maximum average explosion rate max is 693 m/s, and 

the maximum average velocity max is 622 m/s. These 

four maximum values all appear in the test group with a 

concentration ratio of 1.28. Compared with the six test groups 

(with concentration equivalent ratios of 0.46, 0.63, 0.91, 1.52, 

1.67 and 1.98, respectively), the average explosion overpressure 

of this group increased by 17.9%, 11.9%, 8.2%, 1.5%, 1.5% 

and 11.8%, respectively; the average explosion rate increased 

by 3.5%, 4.0%, 2.3%, 1.1%, 0.6% and 2.0%, respectively. The 

results show that the effect of the equivalent ratio on pressure is 

greater than that on flow rate.

Figure 3.6 shows that when the concentration 

equivalence ratio is less than 1, the explosion speed and 

pressure rise rapidly with the increase of the concentration 

equivalence ratio, and reach a peak value when it is 

close to 1.3, and then gradually decrease, presenting an 

"inverted U" curve as a whole. The study found that in the 

RP-3 aviation kerosene-air mixture, there is an optimal 

combustion mass fraction, at which the energy generated 

is the largest.

3.2 Determination of aviation kerosene vapor 
deflagration parameters

In the petrochemical industry, liquid fuel vapor 

explosion constitutes the most common dangerous 

scenario. Its core mechanism lies in the mixture of 

fuel vapor and oxygen. When the ratio is appropriate 

and encounters ignition energy, it will cause a violent 

explosion. Such incidents have serious consequences and 

pose a huge threat to public safety and property. Therefore, 

in-depth exploration of the reaction characteristics of 

fuel vapor explosion and accurate acquisition of its key 

parameters of combustion and explosion have become the 

key to preventing and controlling such industrial accidents 

and avoiding the recurrence of tragedies. This study used 

a horizontal shock tube platform to carry out a series 

of experiments specifically for RP-3 aviation kerosene 

vapor, successfully determined the explosion pressure and 

velocity of kerosene vapor at different concentrations, and 

analyzed the specific effect of ambient temperature on the 

explosion pressure. In addition, the explosion pressure 

change trend of kerosene vapor in a specific concentration 

range under different volatile components was carefully 

analyzed, and the explosion limit under different volatile 

temperatures and initial ambient temperatures was 

clearly defined. These valuable data not only provide an 

important basis for preventing aviation kerosene vapor 

explosion accidents, but also lay a solid foundation for 

subsequent safety research in this field.

3.2.1 Experimental setup
The core structure of the experimental device includes 

Figure 3.6 Average explosion velocity and pressure - 

concentration equivalent ratio trend chart
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a horizontal shock tube system, a special gas supply unit, 

an efficient heating module, a precise ignition device, and 

a pressure measurement system that is consistent with the 

previous experiment. In particular, the ignition link uses 

a chemical ignition head with energy precisely controlled 

to 20 joules, which is triggered by an advanced detonation 

controller to ensure the stability of the experimental 

operation. As for pressure measurement, this experiment 

uses the same but verified pressure measurement system 

as the experiment in the previous chapter.

2.2.1. Horizontal shock tube system
The shock tube used in this experiment is uniquely 

designed, with a total length of 2 meters, an outer 

diameter of 90 mm, an inner diameter reduced to 70 mm, 

and an effective volume of approximately 7.69 liters. 

The tube is tightly sealed at both ends through a sturdy 

flange structure to ensure a highly airtight experimental 

environment. Four precision pressure sensors are arranged 

at equal intervals along the bottom of the tube, 30 cm 

apart from each other, and are marked as 1#, 2#, 3#, and 

4# in order to accurately monitor the pressure changes 

at different positions in the tube. In particular, there are 

two interfaces above the tube, located 30 cm and 170 

cm away from the ignition end, respectively. These two 

interfaces are connected to the circulation pump system 

to evenly mix the gas components in the tube. In addition, 

the vacuum gauge and vacuum pump are also cleverly 

installed above the tube, and are flexibly controlled by a 

ball valve to meet the specific vacuum conditions required 

for the experiment. It is worth mentioning that a circular 

transparent observation window is embedded on the right 

side of the tube, providing an intuitive perspective for 

the experimenter to clearly observe the dynamic changes 

of the flame at the moment of explosion. For the specific 

layout, please refer to the schematic diagram of the 

horizontal shock tube shown in Figure 3.7.

3.2.2.2 Gas generating device
The gas generation device required for the experiment 

cleverly utilized abandoned fire extinguishers for 

modification. Its main structure has a diameter of 15 cm 

and a height of 45 cm. It is calculated that its internal 

space can accommodate about 7.96 liters of gas. A 

pressure gauge is cleverly installed on the top of the 

device, and its measurement range covers -0.1MPa to 

0.1MPa, which can intuitively reflect the pressure state 

inside the container. In addition, the device is carefully 

designed with three interfaces with valves, one of which 

is specifically used to connect the shock tube to ensure 

that the experimental gas can be transmitted smoothly; the 

second valve is set as a vent valve to release the gas in the 

container to adjust the pressure when necessary; and the 

third valve is used as a reserved interface.

3.2.2.3 Heating system
The experiment used two different heating methods 

to independently control the temperature of the shock 

tube and kerosene vapor. Each heating system device 

consists of three components: a heater, a thermostat, and 

an insulation layer.

(1) The core of the heating system is a 3 cm wide 

heating belt that can output 100 watts of heat per meter. 

It is cleverly wrapped around the outer circumference 

of the container and closely connected to an advanced 

temperature control device. This heating belt uses a nickel-

chromium alloy electric heating flat wire that is resistant 

to high temperatures up to 450°C as a heat source, and the 

outer layer is carefully wrapped with durable glass fiber to 

ensure safety and durability.

(2) Temperature Control Center - A professional 

device from Shanghai Huajian Electric Heating Equipment 

Co., Ltd., it not only has a load bearing capacity of up to 

40 amps and 8,000 watts, but is also equipped with a high-

precision thermocouple sensor with an accuracy of up to 

0.5%. The controller monitors the container temperature 

in real time and compares it with the preset temperature 

Figure 3.7 Schematic diagram of horizontal shock tube system
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value, intelligently adjusts the working state of the heating 

belt, and accurately achieves temperature control.

(3) To further enhance the thermal insulation effect, a 

two-layer thermal insulation structure is cleverly designed 

on the outside of the container: the inner layer uses a high-

efficiency thermal insulation material - glass wool tube, 

which effectively reduces heat loss and accelerates the 

heating process; the outer layer is covered with a highly 

reflective tin foil layer, which not only effectively blocks 

the escape of thermal radiation, but also further improves 

the overall thermal insulation performance.

3.2.2 Experimental methods
(1) Selection of kerosene injection method

Given the significant adsorption characteristics of 

kerosene on the shock tube wall, the vapor introduction 

method of kerosene as a liquid fuel is directly related to 

the accuracy of the kerosene vapor concentration in the 

reaction vessel, so it is crucial to choose the appropriate 

kerosene injection technology . In experiments to 

explore the explosion characteristics of combustible gas 

(vapor), researchers generally use three different injection 

strategies. First, one method is to drive kerosene into 

fine aerosol particles by high-pressure gas and evenly 

disperse them in the reaction space. Although this method 

can effectively promote mixing uniformity, kerosene 

droplets tend to adhere to the tube wall during high-

pressure injection, affecting the accuracy of concentration 

measurement. Secondly, directly injecting a certain 

amount of kerosene into the container and heating it 

for evaporation, although it is simple and direct, the 

incomplete fuel conversion makes it difficult to accurately 

control the amount of steam actually participating in the 

reaction. Finally, the premixed gas distribution method 

is to fully mix the kerosene vapor with oxygen and 

dilution gas in the gas distribution chamber before the 

reaction, and then introduce it into the reaction vessel. 

Although this method can ensure uniform mixing, the 

strong adsorption of the inner wall of the gas distribution 

equipment also introduces measurement errors.

The innovative sampling process of this experiment 

is cleverly designed. First, an appropriate amount of 

kerosene is injected into the gas generation system as 

the starting material. Subsequently, the launch device 

is heated using an external heat source to convert the 

kerosene partially into a vapor state. Next, the partial 

pressure gas distribution technology is finely controlled to 

ensure that the vapors can be efficiently and completely 

introduced into the shock tube. This strategy not only 

avoids the drawback of incomplete evaporation of 

kerosene in traditional methods, but also significantly 

reduces the adsorption effect of the gas distribution 

container on the kerosene components, thereby greatly 

improving the accuracy and reliability of the experimental 

data.

(2) Determination of temperature

Since the thermocouples of the heating system only 

monitor the temperature of the outer wall of the container, 

when the outer wall reaches the preset experimental 

temperature (such as 150°C for the shock tube and 100°C 

for the gas generator), the control system will instruct the 

heating belt to stop working. However, this design ignores 

the temperature difference between the inside and outside 

of the container, the so-called temperature gradient, which 

is particularly significant in the internal environment 

of the shock tube. In order to accurately grasp the real 

temperature dynamics inside the container, the research 

team adopted a multi-point thermocouple arrangement 

strategy, and tracked the evolution of the inner and outer 

wall temperatures of the shock tube and its supporting gas 

generator over time during the heating process, as shown 

in Figure 3.8, thereby providing more comprehensive 

temperature distribution information.

Figure 3.8 Temperature changes over time of (a) shock tube and 

gas generator (b) inside and outside of the device during heating
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Observe the data presented in Figure 3.8 (a). When 

the heating temperature does not exceed 80°C, the 

temperature inside and outside the shock tube is almost 

the same, indicating balanced heat transfer. However, 

once the temperature rises to the range of 80°C to 105°C, 

the outer wall temperature is significantly higher than the 

inner wall by about 4°C, and this temperature difference 

gradually increases with the heating process. Until the 

tube wall temperature reaches 150°C, the temperature 

inside the tube stabilizes at 145°C and no longer rises. 

In view of this, when setting the target value of the 

temperature control device, it is necessary to refer to the 

data in the figure for appropriate adjustments.

Figure 3.8(b) reveals the significant difference in 

the heating behavior between the gas generator and the 

shock tube. The temperature rise is more rapid, which is 

attributed to the smaller surface area that reduces heat 

loss and the excellent thermal insulation performance 

of the insulation layer. It is worth noting that during the 

heating period, the temperature curves inside and outside 

the container are closely matched, with only a small 

(about 1°C) difference at individual temperature points, 

which can be inferred that the external wall temperature 

is similar to the internal ambient temperature. Therefore, 

in the experiment on the gas generator, no additional 

correction is required when setting the temperature.

(3) Experimental procedures

Before the experiment starts, the first step is to use 

a vacuum pump to reduce the internal pressure of the 

shock tube to -0.08MPa, so as to fully test and adjust the 

sealing performance of the tube body to ensure that it 

meets the experimental standards. Once the airtightness 

is verified, according to the guidance of Figure 3.8 (a), 

an appropriate amount of kerosene is injected into the 

gas generating unit, and the inside of the generator is 

further evacuated to an extremely high vacuum state by 

a vacuum pump. Subsequently, the temperature control 

system is activated to heat the gas generator and the 

shock tube to the preset experimental temperature at the 

same time, so that the kerosene is converted into a certain 

concentration of steam. After all equipment reaches the 

target temperature, the shock tube is subjected to high 

vacuum treatment again, and the valve leading to the gas 

generator is carefully opened to accurately control the 

injection amount of kerosene steam. Next, by introducing 

an appropriate amount of air, the vacuum degree in 

the shock tube is gradually reduced to almost zero. 

Subsequently, the circulation pump is started and operated 

for 10 minutes to ensure that the gas in the tube is fully 

mixed and evenly mixed. Finally, the ignition device is 

connected to trigger the explosion, and the experimental 

data is collected in real time. After each experiment, the 

vacuum pump is used to extract the exhaust gas several 

times to thoroughly clean the tube body in preparation for 

subsequent experiments.

3.3 Summary of this chapter
This chapter deeply analyzes the complex mechanism 

of the anti-knock performance of aviation kerosene, and 

comprehensively explores its deflagration characteristics 

and the influencing factors behind it with the help 

of a series of carefully designed experiments. In the 

experimental exploration of the cloud deflagration 

phenomenon of aviat ion kerosene,  not  only the 

construction of the experimental equipment, the selection 

of fuels and the experimental process are elaborated in 

detail, but also the experimental data are deeply analyzed 

to reveal the deflagration response mode of aviation 

kerosene under different environmental variables and its 

potential safety challenges. Subsequently, through a high-

precision steam deflagration parameter measurement 

system, the key indicators that determine the safety 

of the fuel are successfully captured, and a solid data 

foundation is built for safety assessment. Furthermore, 

by adjusting the chemical composition of aviation 

kerosene and introducing anti-knock additives containing 

isoparaffins and metallic ash, it is observed that these 

improvement measures have a significant effect on the 

anti-knock performance of kerosene, opening up a new 

path for improving the safety performance and application 

breadth of aviation fuel. This series of research results 

not only strengthens the understanding of the anti-knock 

performance of aviation kerosene, but also provides 

valuable theoretical basis and practical guidance for future 

technological innovation and safety upgrades of aviation 
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fuel.

Among the strategies for enhancing the anti-knock 

capability of aviation kerosene, the core means include 

process optimization, additive formulation, and the 

introduction of high-efficiency anti-knock components. 

Specifically, through complex isomerization and alkylation 

technology innovations, the anti-knock performance 

of aviation kerosene has been significantly improved, 

although this method is accompanied by a high economic 

cost. On the other hand, the incorporation of isooctane 

as an additive, although the improvement in anti-knock 

performance is relatively mild, also provides an effective 

way to increase the octane number. At the same time, the 

addition of isopentane helps to adjust the vapor pressure 

characteristics of kerosene. It is worth noting that studies 

have shown that metal ash anti-knock agents MMT have 

shown excellent effects in improving the anti-knock 

performance of aviation kerosene, and their optimal use 

concentration is locked between 200 and 300 ppm. In 

view of increasingly stringent environmental protection 

requirements, exploring green and harmless alternative 

anti-knock agents has become the focus of current 

research, opening up new paths for safety improvement 

and environmentally friendly transformation in the field of 

aviation fuel.

4  R e s e a rc h  o n  F o re c a s t 
o f  A v i a t i o n  K e r o s e n e 
Consumption
4.1 Deep Learning

Deep learning is a technology based on an artificial 

neural network model, which consists of multiple levels 

of nodes (or neurons) that have the functions of receiving 

(input) and transmitting (output) information, and is 

interspersed with possible multiple hidden layers. In 

the process of deep learning, the system first focuses 

on the preliminary features of the data, and then uses 

these basic features to build more advanced and abstract 

feature representations in a layer-by-layer progressive 

manner. This process is similar to the human brain's 

understanding of complex information. Compared with 

traditional machine learning, deep learning is widely used 

in both supervised learning and unsupervised learning. 

The artificial neural network (ANN), as its cornerstone, 

realizes the adaptability and nonlinear characteristics of 

information processing based on the latest research in 

neuroscience. It uses computer simulation technology to 

process, convert and store information by simulating the 

connection and interaction between neurons. The system 

includes three units: output, input, and implicit. In the 

figure below, we see an input, which is a nonlinear one 

with a large number of neurons, usually called x. Here, 

the x input is usually an input vector. At the output level, 

after being transmitted by specific nerve cells, it is usually 

called the output of y. Here, the output of y is an output 

vector, usually with a multi-point input and a multi-point 

output. A hidden layer (often referred to as a "hidden 

layer") is a hierarchy consisting of many neurons and 

connections between inputs and outputs. A hidden layer 

can be multiple layers, usually as a layer.

The total input is from a1 to an, and the corresponding 

neuron weights are w1 to wn, b represents the bias, f is 

the transfer function (usually nonlinear, such as ansig (), 

traingd (), thardlim (), etc.), and t represents the output of 

the neuron.

Convolutional neural network (CNN) is a feed-

forward neural network with multiple layers, which 

has strong learning and adaptive capabilities, high fault 

tolerance and fast computing speed. Currently, it has been 

widely used in speech recognition, image recognition and 

Figure 4.1 Simple neural network
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target recognition.

Neural networks usually consist of convolutional 

layers, input layers, activation layers, fully connected 

layers, and pooling layers. Commonly used convolutional 

neural network models include AlexNet, LeNet, ZF Net, 

VGGNet, Google Network (Inception), and ResNet . 

Among them, AlexNet won the first prize in the 2012 

Image Classifier Competition and became one of the most 

representative image classification models. It achieved this 

goal through training. Figure 4.2 shows the hierarchical 

structure of AlexNet .

AlexNet has an eight-layer architecture consisting of 

five convolutional layers focused on feature extraction 

alternating with three fully connected layers responsible 

for information integration. Each convolutional layer 

is followed by an activation layer that enhances the 

network’s representation capabilities through nonlinear 

transformations. In addition, to control the data size and 

enhance the robustness of the features, the convolutional 

layers are cleverly embedded with pooling layers. 

Regarding the input data, AlexNet expects to receive a 

224x224 pixel color image with three RGB channels. 

However, before actual processing, the image is 

preprocessed to a size of 227x227x 3 to accommodate the 

processing requirements of the first layer of the network. 

When entering convolutional layer 1, the network uses 96 

convolutional kernels of exact size 11x11x 3 for feature 

mapping, which are specially designed to capture the 

details of the image in the three RGB color channels. 

It is worth noting that the convolution operation uses a 

stride of 4 when sliding on the image, so as to efficiently 

traverse the entire image area and generate a rich feature 

map, so the number of new image features extracted is:

 Kannaiyan conducted an in-depth analysis of 

the drawbacks of low-altitude flight of aircraft, and 

successfully constructed an exponential relationship 

model between fuel consumption and flight altitude by 

integrating actual flight records with advanced genetic 

algorithm technology (Kannaiyan, 2020). In contrast, 

Berger took a different approach, introduced the receiver 

operating characteristic curve as an optimization method, 

and designed an innovative support vector machine 

network model to predict fuel consumption. This model 

uses detailed flight data collected on the route as a 

training basis, which significantly improves the prediction 

accuracy (Berger, 2021). Kreyer focused on fuel 

management during the flight climb phase, and through 

genetic algorithm technology, developed a new fuel flow 

prediction model that comprehensively considers flight 

altitude and true airspeed, providing a new perspective for 

aviation fuel efficiency management (Kreyer, 2020).

4.2 Fuel consumption prediction model based on RBF 
neural network

Based on the core research objectives of this 

paper, this section focuses on building a practical fuel 

consumption prediction model suitable for the tactical 

phase. Through a detailed analysis of the factors affecting 

fuel consumption in each flight phase in the QAR data, 

the unique impact of each key factor on fuel consumption 

in different flight phases is determined. Based on this, 

the advanced technology of radial basis function neural 

network is used to tailor a high-precision fuel consumption 

prediction model for each flight phase. At the same time, 

the robustness of the established model is verified.

As an efficient feedforward network architecture, 

radial basis function (RBF) neural network has shown 

excellent approximation ability, simplified training 

process, fast learning convergence speed, and the ability 

to effectively solve the local optimal trap. In view of these 

significant advantages, RBF neural network has been 

widely used in many fields such as pattern recognition 

tasks, complex nonlinear control system design and image 

processing applications.

Its value depends only on the distance from the origin, 

Figure 4.2 Schematic diagram of the hierarchical structure of the 
AlexNet model
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that is, Φ(x)=Φ(‖x‖), or it can be the distance from any 

point c, where point c is called the center of the circle, that 

is, Φ(x,c)=Φ(‖xc ‖ ). φ with this property is called a radial 

basis function.

Although other distance metrics are available, the 

Euclidean distance is the most commonly used standard. 

In the structure of neural networks, it can be used as the 

main function of fully coupled layers and ReLU layers.

When N pairs of input and output data ( ),, kk yx k = 1, 
2, ..., N are given, an RBF neural network with arbitrary 

accuracy can be constructed. The hidden layer unit in the 

RBF network is calculated as follows:

( ) ( )







 −
= 2

2
1

2
exp

R
cxxRi

The learning process of the RBF neural network for 

the aviation kerosene fuel process is as follows:

(1) Select an appropriate radius r to determine the 

complexity of the network. R is a one-dimensional 

parameter, and a suitable value can be obtained based on 

experimental results and error data. The vector S(l) is used 

to store the sum of different types of output media. Then, 

the count value CT(L) is determined to count the number 

of samples of each type.

(2) Starting from the first data ( ),1,1 yx pair, set the 

cluster center with 1c = 1x , S(1)= 1y , CT(1)= 1. The 
RBF network has only one hidden unit, the center of the 

hidden unit is the weight vector from the hidden unit to 

the output layer ( ) )1(/11 CTSw = .

(3) Starting from the second data pair ( )22 , yx
, find the distance 2x to 1c this cluster center 1

2 cx −

. If 1
2 cx − R∈ , then it 1c 2x is the nearest neighbor 

cluster, and let S(1) = 1y + 2y , CT(1) =2, 1
w = S(1) /

CT(1); if 1
2 cx − <R, then it will 2x be used as a new 

cluster center, and let 2c = 2x , S(2)= 2y , CT(2)=1. 
The hidden units are added to the RBF network, and the 

weight vector from the hidden units to the output layer 

2w = S(2) /CT(2).

(4) Starting from the kth data pair ( )kk yx , , we find 

that there are cluster centers hn with the center points 

being 1c , 2c ,,, hc , and there are hn hidden units added 
to the RBF network. We find the distance of the cluster 

center | kx - ic |, i =1,2,,, hn , let | kx - jc | be the 

minimum distance among these distances, that is ic kx , 
the nearest neighbor cluster of, then:

If | kx - jc |>R, it will be kx used as a new cluster 

center and set 1+hnc = kx , hn = 1+hn , S( hn ) = ky
, CT( hn ) = 1. And keep the values of S(i ), CT(i ) 

unchanged, i = 1, 2,,, hn -1. hn A hidden unit is added to 
the RBF network, and the weight vector from the hidden 

unit to the output layer hnw = S( hn ) /CT( hn ).

If 1
2 cx − <R, then S (j) = S (j) + ky , CT (j) = CT (j) 

+ 1. When i > j, i = 1, 2,,, hn , and keep the values of S (i 

) and CT (i ) unchanged. The weight vector from the iw
hidden unit to the output layer is = S (i ) / CT (i ), i = 1,,, 

hn .
(5) Based on the above rules, the RBF neural network 

for aviation kerosene fuel consumption is established. The 

network output is
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RBF is a three-layer feed-forward network with a 

single hidden layer .

The first layer is the input layer composed of signal 

source nodes.

The number of nodes in the second layer of the 

network, the hidden layer, is flexibly configured according 

to the characteristics of the problem. The activation 

of neurons in the hidden layer depends on a special 

radial basis function, which has a non-negative linear 

characteristic that gradually weakens from the center 

to the periphery, showing a local sensitive response in 

space. This localized response mechanism emphasizes 

the changes in the input data in a specific area, which 

is different from the previous global response transfer 

function.

In the neural network architecture, the third layer, as 

the output layer, directly reflects the response results of 

the input layer. The input layer plays the role of a signal 
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transmitter, transmitting information to the network. In 

particular, the input layer and the hidden layer that follows 

it can be regarded as a direct path with fixed connection 

weights (i.e., weight 1). It is worth noting that there are 

significant differences in the functions and processing 

methods of the output layer and the hidden layer: the 

output layer focuses on the adjustment of linear weights, 

which is achieved through linear optimization techniques. 

This process leads to a faster resource (such as computing 

resources or hypothetical “kerosene”) consumption rate 

due to its directness. In contrast, the hidden layer is 

committed to optimizing the parameters of the activation 

function (such as the Gaussian function, as a common 

choice), which involves nonlinear optimization strategies.

In other words, the radial basis function constitutes a 

two-layer neural network. In this network model, the RBF 

network is used as the activation function, and the output 

adopts a linear method.

When reconstructing the data, the hidden layer uses 

the radial basis function and uses Φ (||X- Xp ||) to replace 

the original data vector representation. Since there are P 

centers in total, the dimension of the new data is P. Next, 

the data is classified again.

The RBF network can be divided into three parts: 

input layer, hidden layer and output layer. The specific 

structure is shown in Figure 4.1. This method first takes 

the main factors as input, then trains through the hidden 

layer, and finally obtains the final prediction result in the 

output layer.

Figure 4.3 Schematic diagram of radial basis function neural network 
structure

(4.1)

Among them, iy represents the output of the model; 

ix represents the input of the model; ρx represents the 

center of the basis function; jw represents the weight 
value; and δ represents the smoothness parameter.
4.2.3 Verification Analysis

The key factors that have a significant impact on fuel 

consumption in each flight phase from the tactical phase 

QAR data carefully analyzed in Chapter 2 are cleverly 

integrated into the aviation kerosene fuel consumption 

prediction model based on the radial basis function (RBF) 

neural network. Subsequently, detailed prediction results are 

generated and cleverly compared with the predictions using 

the convolutional neural network (CNN) model and the 

multi-layer perceptron (MLP) model. As shown in Table 4.1, 

the comparison results are particularly striking: in the critical 

takeoff and climb phase, the RBF neural network model 

shows excellent performance, with an average error rate of 

only 5.73%, significantly lower than the 15.01% of the CNN 

model and the 17.68% of the MLP model.

The prediction results shown in Figure 4.4 reveal 

the excellent performance of the RBF neural network in 

predicting the fuel consumption during the aircraft climb 

phase. The model not only accurately tracks the actual fuel 

consumption trend, but also shows a high degree of fit, 

although there are slight fluctuations at certain moments.

Table 4.1 Error rate comparison table

RBF Model CNN Model MLP Model
Takeoff climb 

phase
5.73% 15.01% 17.68%

Air cruise phase 3.36% 8.09% 10.33%
Descent approach 

phase
14.04% 18.20% 20.74%

Figure 4.4 Engine fuel flow rate prediction results during takeoff 

and climb
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During the flight, the RBF network was used to 

predict fuel consumption, and its prediction error rate 

was only 3.36%, while the errors of CNN and MLP were 

8.09% and 10.33% respectively. This shows that the fuel 

consumption prediction model established using the RBF 

network can more accurately predict the fuel consumption 

during the flight and has a higher accuracy.

When discussing the prediction of fuel consumption 

during the descent approach phase, the model constructed 

using the RBF neural network showed significant 

advantages, with an average error rate of only 14.04%, 

significantly lower than the 18.20% of the convolutional 

neural network (CNN) and the 20.74% of the multi-layer 

perceptron (MLP). As shown in Figure 4.6, although the 

prediction error of the model in the descent approach 

phase has increased compared to the air cruise phase, it 

still maintains a high prediction accuracy, significantly 

better than the other two models.

During the flight of the aircraft, the fuel consumption 

prediction error of the air cruise phase is generally at a 

low level due to its continuous stability of flight status and 

the scarcity of maneuvering operations, and this phase 

occupies most of the total flight time. In particular, the 

fuel prediction model constructed using the RBF neural 

network shows the smallest prediction error in this phase, 

demonstrating its excellent performance. In contrast, the 

aircraft needs to frequently respond to control instructions 

and perform various maneuvers during the descent 

approach phase. The flight status changes rapidly and the 

time is tight, which naturally leads to a general increase 

in the prediction error in this phase. Despite this, the 

RBF neural network model still maintains the smallest 

prediction error among the three comparison models, 

further verifying its advantage in fuel consumption 

prediction compared with other models.

4.2.4 Generalization Analysis
4.2.4.1 Ten- fold cross validation analysis

When evaluat ing the robustness  of  the fuel 

consumption prediction model based on the radial basis 

function (RBF) neural network, a rigorous ten-fold cross-

validation strategy was adopted. This strategy involves 

evenly dividing the existing 44 flight QAR data into 

ten parts. In each round of validation, one subset is 

independently selected as the test set, and the remaining 

nine subsets are integrated as the training set. This method 

ensures that each training and testing process is based on 

different data combinations, thereby comprehensively 

testing the performance of the model under diverse data 

conditions. Table 4.2 records the results of this series of 

cross-validation in detail, providing solid data support for 

evaluating the robustness of the model.

Table 4.2 Ten- fold cross validation results
From the detailed data in Table 4.2, we can clearly 

observe the performance of the fuel consumption 

prediction model constructed using the RBF neural 

network in the three key flight stages of takeoff and climb, 

air cruising, and descent and approach. Specifically, the 

average error rate in the takeoff and climb stage is 6.08%, 

showing a high prediction accuracy; and the average error 

rate in the air cruising stage is 3.68%, which demonstrates 

the excellent prediction ability of the model in this stable 

flight stage. Although the error rate slightly increased 

to 14.03% in the descent and approach stage, overall, 

the error variance of the three stages remained at a low 

level, which is not only a reflection of the accuracy of the 

Figure 4.5 Fuel flow rate prediction results during air cruising

Figure 4.6 Fuel flow rate prediction results during descent approach
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model, but also further strengthens its strong robustness 

and multi-stage adaptability.

4.2.4.2 Verification and analysis of influencing 
factor sets

As QAR data is confidential and difficult to obtain, 

this project intends to subdivide the combinations of 

various influencing factors according to the types of 

parameter values and the difficulty of obtaining them. The 

detailed divisions are shown in Figure 4.3 below.

In the prediction of fuel consumption, three different 

parameter sets are used as input, namely ADS-B 

(Automatic Dependent Surveillance-Broadcast) data, 

ADS-B combined with meteorological data, and complex 

parameters that can only be extracted from QAR (Quick 

Access Recorder) data. These parameter sets are divided 

into three categories according to the difficulty of data 

acquisition: easy to obtain (ADS-B), relatively easy to 

obtain (ADS-B + meteorological) and difficult to obtain 

(QAR). Subsequently, these parameter sets are input into 

the RBF (Radial Basis Function) neural network model 

for the three flight stages of takeoff, cruising and landing 

to predict fuel consumption. In order to comprehensively 

evaluate the performance of the model, the prediction 

results are compared with the CNN (Convolutional Neural 

Network) and MLP (Multi-layer Perceptron) models. 

Table 4.4 shows in detail the prediction error rate of 

each model under different parameter sets, showing the 

difference in applicability of each model under different 

data conditions.Observing the data in Table 4.4, it can 

be found that when the input parameter set is relatively 

limited, the error rates of the three prediction models 

are all at a high level. However, with the increase in 

the number of parameters, the prediction accuracy of 

all models has been significantly improved, especially 

the performance of the RBF neural network in fuel 

consumption prediction, with a significantly lower error 

rate than the other two models, which strongly proves 

the superiority of the RBF neural network model in fuel 

consumption prediction. Further analysis of the flight 

phase shows that the overall prediction error is high in 

the descent approach phase due to the frequent changes in 

flight status and short duration of the aircraft. In contrast, 

the prediction error is relatively low in the air cruising 

phase due to the stable flight status, few maneuvers and 

most of the flight time. It is worth noting that in the three 

flight phases, the RBF neural network model shows the 

lowest prediction error, which once again confirms its 

excellent performance and stronger robustness in fuel 

consumption prediction.

In summary, the improvement of model prediction 

accuracy significantly depends on the diversity and 

richness of input parameters, which is directly reflected in 

the reduction of prediction errors. Furthermore, through 

verification, the fuel consumption model constructed 

by radial basis function (RBF) neural network shows 

strong robustness and can maintain stable prediction 

performance even in the face of complex and changing 

input conditions. It is worth noting that compared with 

the key variable set obtained through careful screening, 

a new strategy was tried, that is, to reorganize the set of 

influencing factors as model input based on the nature of 

Parameter composition

Less parameter set Ground speed, longitude, latitude, altitude, 
heading

Parameters collection Ground speed, longitude, latitude, altitude, 
heading, wind direction, wind speed, temperature

Multiple parameter 
sets

Ground speed, longitude, latitude, altitude, 
heading, wind direction, wind speed, temperature, 

Mach number, vertical acceleration, lateral 
acceleration, engine exhaust temperature, gross 

weight, fuel quantity in each tank.

Table 4.3 Parameter set table

Table 4.4 Comparison of error rates of different parameter sets

Takeoff climb phase Air cruise phase Descent approach phase
RBF 

Model
CNN 
Model

MLP 
Model

RBF 
Model

CNN 
Model

MLP 
Model

RBF 
Model

CNN 
Model

MLP 
Model

Less 5.58% 19.18% 16.41% 8.55% 19.42% 12.37% 27.16% 44.21% 40.46%
4.63% 8.87% 13.97% 2.54% 9.07% 8.31% 25.57% 51.77% 38.49%
1.70% 3.15% 3.47% 0.49% 3.36% 3.43% 9.17% 18.38% 9.42%
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the parameters and the difficulty of obtaining them. This 

attempt revealed the subtle deviations in the prediction 

effects of different sets of influencing factors, thus 

emphasizing the indispensability of in-depth analysis of 

influencing factors for optimizing model performance.

4.3 Analysis of aviation fuel consumption patterns 
and fuel efficiency evaluation

Analyzing the phenomenon of “fuel consumption” 

in aviation and focusing on the fuel consumption 

characteristics of each flight stage (take-off, cruising, 

landing) and the complex factors behind it is a key step 

in improving aviation fuel efficiency. Studies have found 

that the cruising stage enjoys lower fuel consumption 

efficiency due to its stable flight attitude and high-speed 

characteristics, while the fuel consumption rises sharply 

during the take-off and landing stages due to the need 

to overcome strong gravity and air resistance. At the 

same time, factors such as the choice of flight altitude, 

changes in meteorological conditions, the rationality 

of route design, and the cargo or passenger capacity of 

aircraft all have a profound impact on fuel consumption. 

Based on these insights, airlines can optimize flight path 

planning, implement more sophisticated fuel management 

plans, and improve fuel efficiency with the help of data 

analysis. This move not only helps to reduce operating 

costs, but also plays a positive role in reducing carbon 

emissions and promoting the green transformation of 

the aviation industry. Therefore, a systematic study of 

aviation fuel efficiency and fuel consumption patterns 

is not only a strategic choice for airlines to enhance 

their competitiveness, but also an important way to 

promote the entire aviation industry to develop in a more 

environmentally friendly and efficient direction .

In the framework of in-depth exploration of aircraft 

fuel economy, this chapter focuses on analyzing the 

complex dynamics of “extra fuel consumption caused 

by carrying too much fuel” and analyzes fuel efficiency 

in detail. Relying on the realistic fuel consumption 

prediction model carefully constructed in Section 4.2, a 

series of strategies are adopted to simulate a variety of fuel 

consumption prediction scenarios by flexibly adjusting 

the model input parameters. This process not only reveals 

how the aircraft carrying too much fuel indirectly affects 

the fuel consumption level during the flight, but also 

promotes a deep understanding of the subtle relationship 

between “carrying more fuel” and “consuming more 

fuel”. Furthermore, for the same model, an innovative fuel 

efficiency comparison and evaluation mechanism before 

and after the flight, as well as a real-time fuel efficiency 

monitoring scheme during the flight, are designed.

4.3.1 Experimental simulation
In order to accurately grasp the phenomenon of “fuel 

consumption” of aircraft and evaluate its fuel economy, 

a comprehensive analysis method was adopted, which 

relies on a total of 135 actual flight data of a specific A321 

model from Beijing Daxing Airport to Guangzhou Baiyun 

Airport in February 2022. These data were carefully 

selected to drive two fuel consumption models at the 

same time: one is a prediction model based on the flight 

plan, and the other is closely matched with the actual 

QAR (Quick Access Recorder) data. Through this parallel 

processing strategy, it is possible to directly compare the 

model prediction with the fuel consumption in actual 

operation, so as to accurately verify the accuracy of the 

prediction model. Table 4.5 shows in detail the error rate 

of the plan-oriented fuel consumption prediction model, 

which provides a solid foundation for subsequent model 

optimization and efficiency improvement.

From the data analysis in Table 4.5, it can be clearly 

observed that even after changing the aircraft model and 

adopting the new data set, the fuel consumption prediction 

model based on the convolutional neural network (CNN) 

still shows its excellent stability, and its prediction error 

rate remains at an average level of 5.21%. Figure 4.7 

intuitively depicts the prediction performance of this 

model, which compares the distribution between the 

model prediction value and the actual fuel consumption 

value. In the figure, the blue dotted line marks the ideal 

line of y=x. The closer the prediction point is to this 

Table 4.5 Prediction result error rate table

Average error 
rate

Maximum error 
rate

Minimum error 
rate

CNN Model 5.21% 13.02% 0.29%
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line, the higher the prediction accuracy. Obviously, the 

prediction results in the figure are closely around this blue 

line, which fully proves that the CNN model is not only 

highly accurate in predicting fuel consumption, but also 

has good robustness and can adapt to changes in data of 

different aircraft models.

Using the actual fuel consumption prediction model, 

the prediction error rate is shown in Table 4.6

Table 4.6 Prediction result error rate table

Analyzing the data in Table 4.6, compared with the 

results in Section 4.2, after using the updated aircraft 

data set, the kerosene fuel consumption prediction model 

based on the radial basis function (RBF) neural network 

showed stable prediction performance. Specifically, 

during the take-off and climb phase, the average error 

rate of the model remained at 6.34%, while it dropped to 

3.71% during the air cruise phase. During the descent and 

approach phase, although the error rate rose to 13.56%, 

overall, the prediction error rate of this model did not 

fluctuate much in different flight phases, which fully 

verified its strong robustness and adaptability to different 

aircraft models.

4.3.2 Analysis of aviation fuel consumption 
patterns

As we all know, there is a direct positive correlation 

between the load and kerosene consumption of an 

aircraft: as the load increases, fuel consumption also 

rises. Under this principle, if one intends to increase the 

endurance by increasing kerosene reserves, it is actually 

counterproductive, because the increased kerosene 

itself increases the burden on the aircraft, which in turn 

increases fuel consumption. This phenomenon is vividly 

called the “fuel consumption” effect. This section focuses 

on analyzing this unique phenomenon, aiming to reveal 

how changes in additional kerosene (whose weight is 

deeply affected by human scheduling and meteorological 

conditions) affect the overall fuel efficiency of the 

aircraft and explore the quantitative relationship between 

the two. By abstracting this complex relationship into 

a mathematical model (such as Equation 4.2 and its 

variants), it is possible to more clearly understand 

and optimize the management strategy of the “fuel 

consumption” phenomenon.

(4.2)
Among them, △ y represents the change in kerosene 

fuel consumption;

△ x represents the additional oil change .

In the process of exploring the prediction of kerosene 

fuel consumption, we focus on observing the impact of 

the strategy of adjusting the amount of extra fuel on the 

fuel consumption prediction results, aiming to reveal the 

intrinsic connection between the two, and then extract 

the key coefficient c that affects the phenomenon of “fuel 

consumption” of aircraft. In view of complex factors 

such as weather fluctuations and differences in human 

operations, even the same type of aircraft on the same 

route have diverse characteristics in terms of the amount 

of extra fuel carried. Therefore, we first deeply analyzed 

the distribution profile of the extra fuel in the flight plans 

of these 135 flights, as shown in Figure 4.8, which laid a 

data foundation for the subsequent correlation analysis.

It can be seen from Figure 4.8 that among these 135 

flights, the number of flights carrying 800kg of extra fuel 

is the largest, accounting for 37.04% of the total number 

of flights; the second largest number of flights is carrying 

1200kg, accounting for 20.74% of the total number of 

flights. 83.70% of the flights carry extra fuel between 

[800,1200]kg.

Furthermore, by adjusting the weight of the additional 

Figure 4.7 Distribution of prediction results
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fuel and inputting it into the actual kerosene consumption 

prediction model, a series of prediction results were 

obtained, some of which are shown in Table 4.7. The 

kerosene consumption prediction without adjusting 

the additional fuel was used as the baseline, and any 

subsequent adjusted prediction results were subtracted 

from this baseline, and the difference was used as a 

quantitative representation of the change in kerosene 

consumption .

Table 4.7 shows in detail the subtle changes in the 

flight fuel consumption forecast as the additional fuel 

is adjusted. Specifically, when the additional fuel is 

reduced by 10 kg, the expected fuel consumption of the 

flight decreases slightly, and this change is concentrated 

between -0.796 kg and -0.795 kg, which clearly reflects 

the direct response of fuel consumption to the reduction 

in fuel. Conversely, adding the same amount of additional 

fuel causes the predicted fuel consumption to rise 

slightly, ranging from 0.795 kg to 0.796 kg. This regular 

change proves the clear linear relationship between 

fuel consumption and additional fuel. It is worth noting 

that the range of variation of the fuel consumption 

forecast values of all flights under similar conditions 

is relatively constant, revealing the stability of aircraft 

fuel consumption performance under similar loads. This 

finding is a valuable reference for airlines to optimize 

fuel configuration and flight scheduling, and emphasizes 

the key role of accurate fuel management in controlling 

operating costs and efficiency.

The changes in kerosene fuel consumption for some 

flights are then plotted as shown in Figure 4.9.

In the display of Figure 4.9, the horizontal axis depicts 

the increase or decrease of the additional fuel, while the 

vertical axis reflects the corresponding change of kerosene 

fuel consumption. It is striking that most of the flight 

data points are closely distributed around a straight line, 

revealing a significant linear relationship between the two. 

Therefore, through linear fitting, the coefficient c=0.0809 

can be obtained, that is: Ay=0.0809Ax, and the fitting 

degree is 0.99.

This section of the study focuses on adjusting the 

additional kerosene load of flights, combined with a 

practical application-oriented kerosene consumption 

prediction model, to explore how this variable affects 

the kerosene consumption of the A321 model. The 

experimental results show that every 100 kg of additional 

kerosene change, whether it is an increase or decrease, 

will result in a corresponding change of about 8.09 kg in 

aircraft kerosene consumption. This linear relationship 

not only reveals the direct connection between kerosene 

consumption and additional load, but also provides 

strong support for airlines to formulate more accurate 

kerosene loading strategies. By accurately calculating and 

controlling the kerosene loading, airlines can significantly 

reduce flight costs while promoting environmental 

Figure 4.8 Extra oil statistics

Figure 4.9 Changes in “fuel consumption” of some flights

Extra Oil

Change 
value

… -10Kg 0 +10 kg …

flight … Predicted 
value/kg

Change/
kg

Predicted 
value/kg

Predicted 
value/kg

Change/
kg

…

1 6825.077 -0.796 6825.873 6826.669 0.796
2 6746.977 -0.796 6747.773 6748.568 0.795
3 … 7020.093 -0.795 7020.888 7021.684 0.796 …
4 6801.350 -0.797 6802.147 6802.942 0.795
5 7192.984 -0.796 7193.780 7194.576 0.796

Table 4.7 Partial table of prediction results
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protection and reducing greenhouse gas emissions caused 

by kerosene combustion.

4.3.3 Kerosene fuel  eff iciency evaluation 
indicators

Firstly, from both overall and stage perspectives, an 

evaluation method of aviation kerosene fuel utilization 

is proposed, and based on the actual flight conditions in 

actual flights and combined with pre-flight/post-flight 

QAR data, a study on aviation kerosene fuel efficiency 

evaluation is carried out.

4.3.3.1 Overall indicators
1) Hourly fuel consumption

Hourly fuel consumption is an important measure to 

evaluate the fuel efficiency of an aircraft. It indicates the 

amount of kerosene consumed by an aircraft in one hour 

of flight. The reduction of this value is equivalent to a 

significant increase in the distance or time that the aircraft 

can fly under the same kerosene consumption conditions, 

which reflects the efficient use of kerosene by the aircraft.

(4.3)
Among them, ET i is the hourly fuel consumption of 

flight i, in kg/h;

F i is the kerosene fuel consumption of flight i, in kg;

Ti is the flight time of flight i, in h.

2) Mileage and fuel consumption

Mileage fuel consumption rate, as a key indicator to 

measure flight economy, reflects the amount of kerosene 

consumed by the aircraft for every kilometer it travels. 

This ratio is directly related to fuel efficiency. The 

lower the value, the farther the aircraft can cover with 

the same amount of kerosene consumed, thus reflecting 

higher fuel efficiency. In short, it is an in-depth analysis 

of the aircraft’s kerosene utilization efficiency from the 

perspective of range extension capability .

(4.4)
Among them, EL i is the mileage fuel consumption 

rate of flight i, in kg/km;

F i is the kerosene fuel consumption of flight i, in kg;

Li is the flight distance of flight i, in km.

3) Range kerosene fuel ratio

Specific range, as a quantitative indicator of the ratio 

of range to kerosene fuel consumption, directly reflects the 

distance an aircraft can fly per unit of fuel consumption. 

It is essentially a measure of the range corresponding 

to each unit of kerosene consumption, which is in sharp 

contrast to the mileage fuel consumption rate. Specifically, 

when the specific range value increases, it means that the 

flight distance that the aircraft can cover has increased 

significantly while consuming the same amount of 

kerosene, which indicates that the efficiency of the aircraft 

in kerosene use has been optimized and improved.

(4.5)
Wherein, Wi is the range kerosene fuel ratio of flight i, 

in km/kg.

4) Passenger-kilometers

Passenger kilometers are an important indicator for 

measuring the kerosene fuel efficiency of aircraft. In 

essence, it is the ratio of the passenger transport volume 

supported by a unit of kerosene fuel to the product of 

the flight distance. The increase in this value directly 

reflects that under the same kerosene fuel consumption, 

the aircraft can carry passengers to cover a longer 

distance, which in turn reflects higher fuel economy. In 

other words, the increase in passenger kilometers is an 

effective means to comprehensively evaluate the kerosene 

utilization efficiency of aircraft from the two dimensions 

of passenger volume and flight range.

(4.6)
Where Ki is the passenger-kilometers of flight i, in 

person·km/kg;

Pi is the number of passengers on flight i, in persons;

Li is the flight distance of flight i, in km;

Fi is the kerosene fuel consumption of flight i, in kg.

5) Kerosene fuel consumption fluctuation rate

Based on the past flight data of a specific route and 

aircraft model, an average benchmark value of kerosene 

fuel consumption is established. Subsequently, by 

comparing the actual fuel consumption of each current 

flight with this benchmark, the change ratio of kerosene 

fuel consumption can be calculated. The specific 

calculation method is shown in Formula 4.7. The level of 

this change ratio directly reflects the degree of deviation 

of the aircraft’s fuel efficiency from the historical average 

level: the higher the ratio, the more significantly the 
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aircraft’s kerosene consumption is reduced compared 

to the historical average when flying this route, thereby 

demonstrating a higher kerosene utilization efficiency. 

This statistical analysis provides a powerful tool for multi-

dimensional evaluation of aircraft fuel economy.

(4.7)
Where: Ei is the kerosene fuel consumption floating 

rate of flight i ;

Fi is the actual fuel consumption of flight i, in kg;

Fi is the fuel consumption benchmark for this route, 

in kg.

4.3.3.2 Phased indicators
1) Instantaneous kerosene fuel efficiency

At any time t, the kerosene fuel efficiency of an 

aircraft can be embodied as the true airspeed capability 

converted from kerosene combustion per unit time. 

This efficiency is measured by the direct proportional 

relationship between true airspeed and kerosene 

consumption rate, as explained in formula 4.8. When 

the instantaneous kerosene fuel efficiency is improved, 

it means that the aircraft can obtain a higher speed 

increment when consuming the same amount of kerosene, 

thus reflecting a significant improvement in its fuel 

utilization efficiency.

(4.8)
Where: SFit is the instantaneous kerosene fuel 

efficiency of flight i at time t, in km/kg;

TASit is the true airspeed of flight i at time t, in km/h;

FFit is the kerosene fuel flow rate at flight i at time t, 

in kg/h.

2) Cumulative kerosene fuel efficiency
Cumulative kerosene fuel efficiency is a key indicator 

to measure the flight economy of an aircraft at a specific 

time point t. It is obtained by comparing the cumulative 

flight distance to date with the corresponding total 

kerosene fuel consumed. As shown in formula 4.9. In 

short, the higher this ratio is, the longer the flight distance 

the aircraft can cumulatively cover when consuming the 

same amount of kerosene fuel, which reflects the aircraft’s 

excellent efficiency in fuel utilization. This analysis 

method focuses on historical cumulative data and provides 

an intuitive quantitative basis for evaluating the fuel 

efficiency of an aircraft .

(4.9)
Where: LFit is the cumulative kerosene fuel efficiency 

of flight i at time t, in km/kg;

Lit is the cumulative flight distance of flight i at time t, 

in km;

Fit is the cumulative kerosene fuel consumed by flight 

i at time t, in kg.

4.3.4 Example Analysis
This paper takes one of the 135 flights as the research 

object and evaluates the fuel utilization before and after 

the flight by using flight time series and QAR data.

According to the planned fuel consumption prediction 

model described in Section 4.2, the fuel consumption 

of the aircraft under the current schedule is input and 

compared with the fuel consumption of the original 

route, so as to evaluate the fuel utilization efficiency of 

the aircraft from multiple perspectives, assuming that the 

number of passengers is 180. The results are shown in 

Table 4.8.

From the data comparison in Table 4.8, we can 

clearly see the optimization effect of the fuel consumption 

strategy. Under the original setting, the aircraft needs to 

consume 2192.042kg of fuel per hour, while the adjusted 

plan reduces this value to 2076.721kg, saving 115.320kg 

of fuel per hour. In terms of mileage efficiency, the fuel 

consumption per kilometer is reduced from 3.119kg 

to 2.955kg, and the fuel consumption per kilometer is 

reduced by 0.164kg. Further analysis shows that the 

flight distance per kilogram of fuel is increased from the 

original planned 0.321km to 0.338km, which means that 

the fuel utilization efficiency has increased by 0.018km/

kg. In terms of passenger efficiency, the number of 

passenger kilometers that can be carried per kilogram 

Evaluation indicators Original 
plan Current plan

Hourly fuel consumption (kg/h) 2192.042 2076.721 -115.320
Mileage fuel consumption (kg/km) 3.119 2.955 -0.164

Range fuel ratio (km/kg) 0.321 0.338 0.018
Passenger kilometers (person km/kg) 57.710 60.914 3.204
Fuel consumption fluctuation rate (%) 96.724 102.157 5.433

Table 4.8 Pre-flight fuel efficiency comparison table
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of fuel has increased from 57.710 person-km to 60.914 

person-km, showing a stronger transportation efficiency, 

which is equivalent to an additional 3.204km journey 

for 180 passengers per kilogram of fuel. In addition, the 

fuel consumption fluctuation rate also increased from 

96.724% to 102.157%, an increase of 5.433 percentage 

points, reflecting the flexibility and adaptability of the 

fuel management strategy. This series of data shows that 

the use of a plan-oriented fuel consumption forecasting 

model not only accurately estimates fuel demand, but 

also significantly promotes fuel savings and efficiency 

improvements.

Based on the reality-oriented fuel consumption 

prediction model constructed in Section 4.2, the actual 

fuel consumption of a flight (i.e., the current plan) is 

obtained by analyzing the QAR data of a certain flight, 

and compared with the original QAR data (i.e., the 

original plan), so as to comprehensively evaluate the fuel 

utilization efficiency of this flight. It is assumed that the 

number of passengers is 180, and the results are shown in 

Table 4.9.

Analyzing the data in Table 4.9, it is found that 

the fuel efficiency has been significantly improved. 

Specifically, in terms of hourly fuel consumption, the 

current plan saves 202.751 kg of fuel per hour compared 

with the original plan, that is, from 2304.089 kg to 

2101.338 kg. Further observation shows that the fuel 

consumption per kilometer has also been reduced from 

3.089 kg in the original plan to 2.825 kg in the current 

plan, which means that the fuel consumption per kilometer 

has been reduced by 0.273 kg. From the perspective of 

the range-to-fuel ratio, the flight distance per kilogram of 

fuel in the current plan has increased from 0.323 km in 

the original plan to 0.354 km, achieving a breakthrough 

of 0.031 km more flight per kilogram of fuel. In terms of 

passenger-kilometer efficiency, the passenger-kilometers 

that can be generated by each kilogram of fuel in the 

current plan have increased to 63.710 person-km, 

compared with 58.104 person-km in the original plan, 

which means that each kilogram of fuel can provide an 

additional 5.606 km of transportation services for 180 

passengers. In addition, the fuel consumption floating rate 

has also been adjusted, and the current plan has reached 

106.451%, an increase of 9.026 percentage points from 

the original plan of 97.424%.

In conclusion, by using the fuel consumption 

prediction method based on actual data to estimate the 

aircraft’s fuel consumption, fuel consumption can be 

effectively reduced and fuel efficiency can be improved.

4.4 Summary of this chapter
Through in-depth research on the prediction of 

aviation kerosene consumption, this chapter constructs 

a prediction model with RBF neural network as the 

core, and verifies its effectiveness through a series of 

rigorous verification processes and extensive applicability 

analysis. Taking 135 actual flights as samples, the 

whole process of fuel use is carefully analyzed using 

detailed flight planning and QAR monitoring data. In 

the flight preparation stage, the plan-driven model is 

used to estimate fuel consumption. The results show that 

the optimized flight plan can significantly reduce fuel 

consumption and effectively improve fuel efficiency. After 

the flight, combined with the retrospective verification of 

actual flight data, the results of fuel consumption reduction 

and efficiency improvement are once again confirmed. 

Further, the fuel efficiency during the flight was evaluated 

in stages, and it was found that whether it was takeoff 

acceleration, stable cruising or deceleration descent, the 

new scheme showed a better fuel consumption control 

ability, and the overall operation was stable and efficient. 

In addition, the study also pointed out that the slight 

Table 4.9 Post-flight fuel efficiency comparison

Evaluation 
indicators Original plan Current plan Difference

Hourly fuel 
consumption 

(kg/h)
2304.089 2101.338 -202.751

Mileage fuel 
consumption 

(kg/km)
3.089 2.825 -0.273

Range fuel ratio 
(km/kg) 0.323 0.354 0.031

Passenger 
kilometers 

(person km/kg)
58.104 63.710 5.606
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adjustment of the amount of extra fuel carried has a 

significant impact on fuel consumption. Specifically, every 

increase or decrease of 100 kg of extra fuel will result 

in a corresponding increase or decrease of about 8.09 kg 

in fuel consumption. These findings not only emphasize 

the important role of fuel consumption prediction models 

in aviation energy conservation and emission reduction, 

but also provide valuable theoretical basis and practical 

path for the optimization and upgrading of future aviation 

management.

5 Conclusion and Outlook
5.1 Conclusion

Faced with the rapid development of the global 

aviation industry and the sharp increase in fuel demand, 

as an important energy source supporting this industry, 

the optimization of the anti-explosion performance and 

the accuracy of consumption prediction of aviation 

kerosene have become the focus of industry attention. 

Anti-explosion performance is not only an important 

indicator to measure fuel safety, but also directly affects 

the stable operation ability of aircraft in various complex 

environments. At the same time, in order to achieve 

cost control and operation optimization of airlines, 

accurate prediction of fuel consumption is crucial, which 

is not only related to economic benefits, but also an 

important way to reduce carbon emissions and practice 

environmental protection concepts. Therefore, combining 

multidisciplinary knowledge such as materials science, 

fluid mechanics, and thermodynamics, in-depth research 

on the mechanism of improving the anti-explosion 

performance of aviation kerosene under the action of 

additives, as well as the influence of different flight 

parameters on fuel consumption, has become a hot topic 

of current research. By constructing a refined prediction 

model, it can provide a scientific basis for the selection 

and consumption management of aviation fuel, and 

promote the aviation industry to move towards a more 

efficient and greener future. This research not only has 

far-reaching theoretical exploration value, but also has a 

strong demand for practical applications.

(1) In the study of the explosion characteristics 

of RP-3 aviation kerosene mist, the effects of three 

key parameters, spray pressure, detonation energy and 

concentration equivalence ratio, were systematically 

investigated. The experiment found that as the spray 

pressure gradually increased to 0.40 MPa, the overpressure 

and velocity generated by the explosion showed a 

significant increase, and tended to a stable high level near 

this pressure point, highlighting the importance of pressure 

regulation on explosion intensity. At the same time, the 

enhancement of detonation energy cannot be ignored, 

especially when it reached 1.68 MJ/m², the explosion 

velocity soared to 774 m/s, highlighting the direct effect 

of energy input on the intensity of the explosion. In 

addition, the change in concentration equivalence ratio 

showed a unique “inverted U” effect, and the maximum 

explosion efficiency appeared at an equivalence ratio of 

1.28, which provided key parameters for optimizing the 

explosion performance of fuel mist. This series of findings 

not only deepened the understanding of the safety margin 

of aviation kerosene under different working conditions, 

but also provided a solid experimental basis for the 

application optimization and risk prevention and control 

strategy formulation of related industries .

(2) When analyzing the explosion potential of aviation 

kerosene vapor in depth, it was observed that its explosion 

characteristics were significantly regulated by both 

concentration and ambient temperature. Specifically, at 

90°C, the kerosene vapor concentration of 5.0% exhibited 

the best explosion efficiency, at which the explosion 

overpressure reached a peak of 301.75 kPa, but as the 

concentration increased further, the efficiency showed 

signs of attenuation. On the other hand, the increase 

in ambient temperature not only failed to increase the 

explosion overpressure, but instead caused it to decrease 

and accelerated the arrival of the peak pressure, which 

highlights the acceleration effect of temperature on the 

chemical reaction rate and its profound influence on the 

explosion dynamics. The discussion on the explosion limit 

reveals another level of complexity: as the temperature 

rises, the lower explosion limit gradually decreases, while 

above 120°C, the upper explosion limit tends to stabilize. 

This finding deeply reflects the complex evolution of the 

explosiveness of kerosene vapor under the dual effects of 
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concentration and temperature. Is it necessary to conduct 

a more in-depth exploration of the specific test results and 

conclusions?

(3) In exploring ways to improve the anti-knock 

performance of aviation kerosene, we focus on three major 

strategies: process optimization, component enhancement, 

and additive application. First, we use deep secondary 

processing technologies, such as advanced catalytic 

reforming and isomerization treatment, to successfully 

optimize the quality of kerosene, ensuring that it can meet 

the stringent requirements of high-compression ratio 

aircraft engines. Second, experimental exploration found 

that although isooctane as an additive can moderately 

increase the octane number of kerosene, its effect has an 

upper limit, while isopentane shows a unique advantage 

in increasing the vapor pressure of kerosene. Finally, for 

RP-3 aviation kerosene, we conducted in-depth research 

on the metal ash anti-knock agent MMT and found that 

its optimal addition concentration range is between 200 

and 300 ppm. At this concentration, it can significantly 

enhance the anti-knock properties of kerosene, laying a 

solid foundation for the efficient and stable operation of 

aircraft engines. In short, by combining refined processing 

technology with the scientific and reasonable use of 

additives, we have successfully achieved a significant 

improvement in the anti-knock performance of aviation 

kerosene.

(4) Using radial basis function (RBF) neural 

network technology, an efficient aviation kerosene 

fuel consumption prediction system was designed 

and implemented. The system showed extremely high 

prediction accuracy and stability in different stages of 

the flight cycle, including takeoff climb, air cruising, and 

descent approach. The experimental data clearly showed 

that the average error rate of the RBF model in these 

stages was better than that of the CNN and MLP models, 

specifically 5.73%, 3.36%, and 14.04%, respectively, 

highlighting its significant improvement in prediction 

accuracy. More importantly, by implementing a strict ten-

fold cross-validation process, it was confirmed that the 

model performed uniformly on different test sets and had 

small error fluctuations, proving its wide applicability and 

reliability. In addition, an in-depth study of the impact of 

different parameter configurations on model performance 

found that the richness of the parameter set was positively 

correlated with the prediction accuracy of the model. 

In particular, when dealing with complex and variable 

parameter combinations, the RBF neural network showed 

the best prediction ability and minimized the error. This 

discovery not only strengthened the dominant position of 

the RBF neural network in the field of fuel consumption 

prediction, but also provided strong technical support and 

innovative ideas for researchers in related fields.

(5) This study focuses on analyzing the phenomenon 

of “fuel consumption” of aircraft and the dynamic 

changes of its fuel efficiency, and deeply explores the 

specific impact of additional fuel carried on overall 

fuel consumption. By constructing a fuel consumption 

prediction model that takes into account both the planning 

stage and the actual operation scenario, and relying on 

the detailed flight planning and QAR (Quick Access 

Recorder) data of 135 flights, the high accuracy of the 

model was successfully verified. The study found that for 

every 100 kg increase in additional fuel, the aircraft’s fuel 

consumption will increase by approximately 8.09 kg. This 

clear linear correlation reveals the unique performance 

of fuel efficiency when the aircraft load is adjusted. 

Combined with the fuel efficiency evaluation of the entire 

flight cycle - covering the flight preparation, execution 

and subsequent analysis stages, this study shows that 

the constructed prediction model can significantly 

promote fuel savings, carbon emissions reduction and 

fuel efficiency improvement, providing a powerful tool 

and reference for airlines to optimize flight fuel planning 

and achieve refined management, and further promoting 

the green development and cost control strategies of the 

aviation industry.

5.2 Implications
In order to optimize the anti-explosion performance 

of aviation kerosene and improve its utilization efficiency, 

the following countermeasures can be considered:

5.2.1 Improve fuel formulation and additives

In the journey of  improving the ant i -knock 

performance of aviation kerosene, it is crucial to select 
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base oil as a core strategy. The quality of base oil is 

directly related to key properties of fuel such as flash 

point stability, density distribution and energy density. 

Airlines and fuel supply companies should work 

together to conduct in-depth market research and explore 

innovative and high-efficiency base oil resources, aiming 

to customize the optimal ratio of aviation kerosene. 

Synthetic base oils and ultra-refined petroleum products 

have attracted much attention for their outstanding ability 

to resist oxidation and maintain stable performance 

under high temperature and pressure. Through a series 

of scientific and rigorous performance evaluations and 

comparative analyses, base oil types with significantly 

enhanced anti-knock performance can be identified. In 

addition, combined with the specific operational needs 

of the aviation industry, explore strategies to maximize 

cost-effectiveness to ensure that the selected new base 

oils are not only technologically advanced, but also can 

be used sustainably at the economic level to promote their 

widespread adoption.

In order to significantly improve the anti-knock 

properties of aviation kerosene, incorporating high-

efficiency anti-knock additives has become a key 

strategy. The formulas of these additives often combine 

multiple ingredients such as antioxidants, anti-corrosion 

and performance enhancements, aiming to enhance the 

stability and safety of the fuel in all aspects. Specifically, 

antioxidant ingredients can significantly inhibit the 

oxidation process of fuel during storage and transportation, 

effectively curb the generation of flammable substances, 

and thus weaken the potential threat of explosion. At the 

same time, anti-corrosion agents play the role of protectors 

of fuel systems and engine components, extending the 

service life of these key components by slowing down 

corrosion, and indirectly reducing maintenance and 

replacement costs. Enhancers are committed to optimizing 

the combustion process of fuel, which not only improves 

energy output efficiency, but also significantly reduces 

the generation of harmful emissions. Therefore, airlines 

should actively carry out multi-dimensional evaluation 

and actual testing of additive performance to screen out 

the optimal additive combination solution to ensure that 

it is perfectly adapted to aviation kerosene and is used 

efficiently in actual operations.

In order to continuously enhance the explosion-proof 

performance of aviation kerosene and optimize its use 

efficiency, airlines need to build a rigorous fuel efficiency 

monitoring system. This system should cover the 

collection of real-time operating data and the integration 

of precise laboratory test results, aiming to deeply analyze 

the specific performance of the current fuel formula in the 

actual operation of the aircraft. Based on these detailed 

evaluation feedback, companies need to flexibly adjust 

and improve the fuel formula to ensure that it keeps pace 

with the latest developments in aviation technology and 

equipment upgrades. At the same time, we advocate close 

cooperation with academia and research institutions to 

jointly promote scientific research and innovation in 

the field of aviation fuel, try to introduce cutting-edge 

materials and technologies, and lead the performance 

of aviation kerosene to new heights. This continuous 

evolutionary strategy will not only enhance the explosion-

proof capability of the fuel, but will also effectively 

reduce fuel consumption, optimize operational processes, 

and lay a solid foundation for the sustainable development 

of airlines.

5.2.2 Strengthening fuel management and 
monitoring systems

Building an intelligent management system optimized 

for aviation kerosene is a key measure to improve the 

anti-explosion performance and utilization efficiency of 

fuel. The system seamlessly integrates multi-dimensional 

data sources inside and outside the airline, covering 

comprehensive information such as fuel consumption, 

aircraft operating parameters, maintenance history, and 

environmental weather. With the help of cutting-edge data 

analysis and machine learning algorithms, it can realize 

dynamic monitoring of fuel status and keenly capture 

potential problems such as abnormal consumption and 

quality degradation. In addition, the platform intelligently 

plans flight fuel loading strategies, accurately matches 

demand, and effectively curbs the waste of resources 

caused by excessive loading. Its intuitive visual interface 

provides management with instant and comprehensive 
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data insights, helps to make quick decisions, and ensures 

the refinement and safety of fuel management.

Strengthening the quality monitoring system of 

aviation kerosene is a key link in ensuring its anti-

explosion ability. Airlines need to work with fuel 

suppliers to jointly establish and implement strict quality 

assessment and inspection procedures to ensure that the 

aviation kerosene used meets both domestic standards and 

international specifications. Through periodic chemical 

testing, the core parameters of fuel samples such as anti-

explosion ability, flash point stability and density are 

accurately measured to ensure that the fuel is maintained 

at the best quality at every stage from storage to use. In 

addition, cutting-edge online monitoring technology is 

used to continuously monitor the dynamics of fuel quality, 

quickly capture any signs of quality degradation, and 

effectively prevent safety risks caused by deterioration in 

fuel quality. Furthermore, a fuel quality tracking system 

is established to cover the entire chain from procurement, 

storage to use, laying a solid data support for problem 

tracing and subsequent analysis.

Building a comprehensive aviation kerosene 

usage specification system is the core cornerstone for 

improving management effectiveness and efficiency. 

This specification should cover the entire chain from fuel 

source procurement, safe storage, seamless transportation 

to efficient use, to ensure that each link can achieve 

optimal control of fuel quality and consumption. When 

purchasing, priority should be given to the anti-explosion 

characteristics and quality of the fuel, and high-quality 

suppliers that meet international standards should be 

strictly selected to ensure fuel quality from the source. 

During the storage and transportation stages, a regular 

and detailed tank and pipeline inspection mechanism 

should be implemented to prevent any possible leakage 

and pollution risks. As for the use stage, by establishing 

standardized refueling procedures, the refueling volume 

can be accurately controlled to prevent waste. In addition, 

employee training and education should be strengthened to 

enhance the awareness of all employees on the importance 

of fuel management and ensure that the specifications are 

implemented without blind spots. The implementation 

of this series of measures will significantly promote the 

economic use of aviation kerosene while significantly 

reducing safety risks in operations.

5.2.3 Strengthen flight operations and training
In order to significantly improve the energy efficiency 

and anti-explosion performance of aviation kerosene, 

optimizing the flight operation process has become an 

indispensable part. This requires airlines to conduct 

a comprehensive and detailed review and innovation 

of existing flight procedures, aiming to guide pilots 

to achieve a double leap in fuel economy and safety 

at the practical level. Specifically, airlines can adopt a 

data-driven flight optimization platform, which deeply 

integrates historical flight data, real-time weather forecasts 

and detailed route planning to tailor efficient flight plans 

for pilots, including optimal flight trajectories, flexible 

climb and descent strategies, etc., to dynamically adapt to 

environmental changes and minimize fuel consumption. 

At the same time, establish and continuously improve 

standardized flight operation guidelines to ensure that 

pilots master and implement the most cutting-edge flying 

skills to avoid fuel waste. In addition, strengthen pilots’ 

awareness of fuel management, and advocate strategies 

such as fine-tuning engine output and accurately selecting 

cruising layers to further improve the efficiency of 

aviation kerosene use.

To ensure that pilots have a high level of awareness 

of fuel efficiency and anti-explosion performance, it is 

particularly important to implement a comprehensive 

training program. The training needs to cover in depth the 

basic properties of aviation kerosene, the evaluation of 

its anti-explosion ability, and efficient fuel management 

strategies and flight operation optimization techniques. By 

integrating classroom teaching and practical simulation, it 

aims to deepen pilots’ understanding of aviation kerosene, 

especially how to strategically allocate fuel resources at 

various stages of flight. Using advanced flight simulators, 

pilots can practice and master fuel optimization techniques 

in a near-realistic scenario, while exercising their rapid 

response and decision-making capabilities in complex 

situations. In addition, senior experts and engineers in the 

aviation industry will be invited to hold special seminars 
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regularly. They will share the latest research results and 

successful cases in fuel management, prompting pilots to 

keep up with international trends and master cutting-edge 

technologies and applications. This series of carefully 

designed training activities aims to comprehensively 

enhance pilots’ professional capabilities and strengthen 

their understanding of the importance of fuel management, 

so that they can take more savvy and effective measures in 

actual flights to improve fuel efficiency .

Bui ld ing  a  comprehens ive  f l igh t  opera t ion 

performance evaluation framework is essential to 

ensure efficient and safe training for flight operations. 

This framework needs to meticulously incorporate 

pilots’ multi-dimensional indicators in the field of fuel 

management, such as fuel economy, range and fuel 

consumption ratio, and overall flight efficiency, so as to 

accurately measure the performance of each pilot. By 

implementing regular performance evaluations, airlines 

can keenly capture potential shortcomings and quickly 

adjust training programs to meet challenges. In addition, 

integrating such evaluations directly into the pilot’s 

performance evaluation system can not only inspire pilots 

to pay attention to fuel efficiency optimization, but also 

enhance their professional responsibility and enthusiasm. 

At the same time, the evaluation results, as a valuable 

learning resource, should be used to commend and share 

best practice cases, and encourage peer pilots to learn 

from each other and make progress together. To achieve 

this goal, airlines also need to rely on advanced data 

analysis tools, deeply integrate flight data and evaluation 

standards, conduct in-depth analysis, build a closed-

loop feedback mechanism, and continuously iterate flight 

operation specifications and training content to ensure that 

aviation kerosene resources are maximized and efficiency 

is improved.

5.2.4 Carry out technological innovation and 
R&D

In order to improve the key performance indicators 

of aviation kerosene, especially the anti-explosion ability 

and efficiency of use, exploring and developing efficient 

additives has become the core task in the field of scientific 

research. These additives are designed to directly enhance 

the anti-explosion properties by finely controlling the 

chemical composition and physical state of the fuel. 

The research team should focus on the development 

of innovative additives, which must take into account 

the three major advantages of improving combustion 

efficiency, reducing pollutant emissions and stabilizing 

fuel quality. For example, the optimized antioxidant 

technology can significantly extend the shelf life of 

kerosene, inhibit impurity deposition, and improve fuel 

quality in all aspects. At the same time, in response to 

the call for environmental protection, the development of 

additives based on bio-based raw materials or renewable 

resources has become a new trend, aiming to reduce 

dependence on fossil fuels and effectively reduce the 

environmental impact of the aviation industry. In this 

process, strengthening cross-border cooperation with 

academia, research institutions and industry leaders, and 

building an innovation system with deep integration of 

industry, academia and research will be an effective way 

to accelerate technological breakthroughs and promote 

market transformation.

Innovation of the production process of aviation 

kerosene, especially focusing on enhancing its anti-

explosion performance and utilization efficiency, is a key 

link in promoting the progress of the industry. Faced with 

the challenges of high energy consumption, insufficient 

resource utilization and product quality fluctuations 

common in traditional processes, the introduction of 

advanced production technologies, such as high-efficiency 

catalytic cracking technology and efficient synthesis gas 

conversion technology, has become an important way 

to improve the quality of aviation kerosene. By finely 

controlling the reaction environment, selecting high-

efficiency catalysts and optimizing the overall process 

layout, it is possible to significantly improve production 

efficiency and effectively reduce energy consumption 

while ensuring excellent product quality. In addition, 

actively promoting environmentally friendly production 

processes and integrating waste resource utilization 

technologies will not only help reduce costs, but also 

actively promote environmental protection and achieve 

a win-win situation of economic and ecological benefits. 
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It is important to conduct comprehensive and rigorous 

testing and evaluation of emerging technologies to ensure 

their reliability and economy in practical applications, 

thereby leading aviation kerosene production to a 

greener and more sustainable direction and laying a solid 

foundation for the long-term prosperity of the industry .

In order to enhance the efficiency of aviation kerosene 

use, it is particularly important to promote the innovation 

of fuel consumption prediction technology. This strategy 

focuses on integrating big data, AI and machine learning 

cutting-edge technologies to achieve refined estimates 

of fuel consumption. By deeply exploring past flight 

records, current weather conditions, aircraft load and 

specific route parameters, an intelligent prediction 

model is constructed to cope with the challenges of fuel 

consumption under variable flight distances and flight 

environments. This not only lays a solid data foundation 

for flight planning, but also helps airlines to fine-tune 

route layout and fuel procurement strategies to maximize 

cost-effectiveness. At the same time, the prediction 

model is continuously iterated and optimized, and a real-

time data monitoring mechanism is integrated to ensure 

that the prediction results are both accurate and timely. 

During the implementation process, airlines should 

strengthen cross-departmental collaboration, closely 

link technology research and development, practical 

application and feedback optimization, and build a closed-

loop fuel management ecosystem, so as to achieve a dual 

improvement in aviation kerosene utilization efficiency 

and anti-explosion performance.

5.3 Outlook
In the face of the continued growth in demand in the 

aviation industry, the enhancement of the anti-explosion 

performance of aviation kerosene and the accuracy of 

consumption prediction have become core issues for 

future exploration. In view of the increase in transportation 

volume, the requirements for fuel quality have reached 

an unprecedented level. In order to enhance the anti-

explosion ability of aviation kerosene, the scientific 

research community is focusing on the development 

of new additives, striving to fine-tune its chemical and 

physical properties by adjusting the fuel composition. At 

the same time, the innovation of production processes 

is also regarded as a key breakthrough point, with the 

help of cutting-edge catalytic technology and efficient 

synthesis pathways, aiming to improve the production 

efficiency and quality standards of aviation kerosene. In 

addition, a new model of interdisciplinary cooperation is 

booming, and the integration of wisdom in fields such as 

chemistry, engineering and data science will promote the 

production of aviation kerosene towards intelligent and 

refined management, and comprehensively optimize its 

comprehensive performance in actual flight.

In the aviation field, in-depth exploration of kerosene 

consumption prediction technology is particularly urgent. 

With the vast resources of big data and cutting-edge 

technologies of artificial intelligence, it is expected to 

build an accurate prediction system for aviation kerosene 

consumption, which will become a strong support for 

airlines to formulate strategies and optimize operations. 

Looking to the future, the scientific research community 

needs to focus on the deep mining of historical data and 

the continuous optimization of prediction models to 

improve the accuracy and stability of prediction results. At 

the same time, building a real-time monitoring system and 

incorporating a feedback mechanism will greatly promote 

the refinement and efficiency of fuel management, and 

help aviation companies find the best balance between 

economic benefits and environmental protection. This 

series of research efforts will not only promote an 

efficiency revolution in the use of aviation kerosene, 

but also lay a solid foundation for the industry’s green 

transformation and sustainable development .
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